langchain/docs/extras/integrations/llms/vllm.ipynb

242 lines
6.2 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "499c3142-2033-437d-a60a-731988ac6074",
"metadata": {},
"source": [
"# vLLM\n",
"\n",
"[vLLM](https://vllm.readthedocs.io/en/latest/index.html) is a fast and easy-to-use library for LLM inference and serving, offering:\n",
"* State-of-the-art serving throughput \n",
"* Efficient management of attention key and value memory with PagedAttention\n",
"* Continuous batching of incoming requests\n",
"* Optimized CUDA kernels\n",
"\n",
"This notebooks goes over how to use a LLM with langchain and vLLM.\n",
"\n",
"To use, you should have the `vllm` python package installed."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8a3f2666-5c75-4797-967a-7915a247bf33",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!pip install vllm -q"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "84e350f7-21f6-455b-b1f0-8b0116a2fd49",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO 08-06 11:37:33 llm_engine.py:70] Initializing an LLM engine with config: model='mosaicml/mpt-7b', tokenizer='mosaicml/mpt-7b', tokenizer_mode=auto, trust_remote_code=True, dtype=torch.bfloat16, use_dummy_weights=False, download_dir=None, use_np_weights=False, tensor_parallel_size=1, seed=0)\n",
"INFO 08-06 11:37:41 llm_engine.py:196] # GPU blocks: 861, # CPU blocks: 512\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 1/1 [00:00<00:00, 2.00it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"What is the capital of France ? The capital of France is Paris.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from langchain.llms import VLLM\n",
"\n",
"llm = VLLM(model=\"mosaicml/mpt-7b\",\n",
" trust_remote_code=True, # mandatory for hf models\n",
" max_new_tokens=128,\n",
" top_k=10,\n",
" top_p=0.95,\n",
" temperature=0.8,\n",
")\n",
"\n",
"print(llm(\"What is the capital of France ?\"))"
]
},
{
"cell_type": "markdown",
"id": "94a3b41d-8329-4f8f-94f9-453d7f132214",
"metadata": {},
"source": [
"## Integrate the model in an LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5605b7a1-fa63-49c1-934d-8b4ef8d71dd5",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processed prompts: 100%|██████████| 1/1 [00:01<00:00, 1.34s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"1. The first Pokemon game was released in 1996.\n",
"2. The president was Bill Clinton.\n",
"3. Clinton was president from 1993 to 2001.\n",
"4. The answer is Clinton.\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from langchain import PromptTemplate, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"question = \"Who was the US president in the year the first Pokemon game was released?\"\n",
"\n",
"print(llm_chain.run(question))"
]
},
{
"cell_type": "markdown",
"id": "56826aba-d08b-4838-8bfa-ca96e463b25d",
"metadata": {},
"source": [
"## Distributed Inference\n",
"\n",
"vLLM supports distributed tensor-parallel inference and serving. \n",
"\n",
"To run multi-GPU inference with the LLM class, set the `tensor_parallel_size` argument to the number of GPUs you want to use. For example, to run inference on 4 GPUs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8c25c35-47b5-459d-9985-3cf546e9ac16",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import VLLM\n",
"\n",
"llm = VLLM(model=\"mosaicml/mpt-30b\",\n",
" tensor_parallel_size=4,\n",
" trust_remote_code=True, # mandatory for hf models\n",
")\n",
"\n",
"llm(\"What is the future of AI?\")"
]
},
{
"cell_type": "markdown",
"id": "64e89be0-6ad7-43a8-9dac-1324dcd4e851",
"metadata": {
"tags": []
},
"source": [
"## OpenAI-Compatible Server\n",
"\n",
"vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.\n",
"\n",
"This server can be queried in the same format as OpenAI API.\n",
"\n",
"### OpenAI-Compatible Completion"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c3cbc428-0bb8-422a-913e-1c6fef8b89d4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" a city that is filled with history, ancient buildings, and art around every corner\n"
]
}
],
"source": [
"from langchain.llms import VLLMOpenAI\n",
"\n",
"\n",
"llm = VLLMOpenAI(\n",
" openai_api_key=\"EMPTY\",\n",
" openai_api_base=\"http://localhost:8000/v1\",\n",
" model_name=\"tiiuae/falcon-7b\",\n",
" model_kwargs={\"stop\": [\".\"]}\n",
")\n",
"print(llm(\"Rome is\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "conda_pytorch_p310",
"language": "python",
"name": "conda_pytorch_p310"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}