mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
302 lines
11 KiB
Python
302 lines
11 KiB
Python
|
import logging
|
||
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.outputs import GenerationChunk
|
||
|
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
||
|
from langchain_core.utils import get_pydantic_field_names
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class HuggingFaceTextGenInference(LLM):
|
||
|
"""
|
||
|
HuggingFace text generation API.
|
||
|
|
||
|
To use, you should have the `text-generation` python package installed and
|
||
|
a text-generation server running.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Basic Example (no streaming)
|
||
|
llm = HuggingFaceTextGenInference(
|
||
|
inference_server_url="http://localhost:8010/",
|
||
|
max_new_tokens=512,
|
||
|
top_k=10,
|
||
|
top_p=0.95,
|
||
|
typical_p=0.95,
|
||
|
temperature=0.01,
|
||
|
repetition_penalty=1.03,
|
||
|
)
|
||
|
print(llm("What is Deep Learning?"))
|
||
|
|
||
|
# Streaming response example
|
||
|
from langchain_community.callbacks import streaming_stdout
|
||
|
|
||
|
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
|
||
|
llm = HuggingFaceTextGenInference(
|
||
|
inference_server_url="http://localhost:8010/",
|
||
|
max_new_tokens=512,
|
||
|
top_k=10,
|
||
|
top_p=0.95,
|
||
|
typical_p=0.95,
|
||
|
temperature=0.01,
|
||
|
repetition_penalty=1.03,
|
||
|
callbacks=callbacks,
|
||
|
streaming=True
|
||
|
)
|
||
|
print(llm("What is Deep Learning?"))
|
||
|
|
||
|
"""
|
||
|
|
||
|
max_new_tokens: int = 512
|
||
|
"""Maximum number of generated tokens"""
|
||
|
top_k: Optional[int] = None
|
||
|
"""The number of highest probability vocabulary tokens to keep for
|
||
|
top-k-filtering."""
|
||
|
top_p: Optional[float] = 0.95
|
||
|
"""If set to < 1, only the smallest set of most probable tokens with probabilities
|
||
|
that add up to `top_p` or higher are kept for generation."""
|
||
|
typical_p: Optional[float] = 0.95
|
||
|
"""Typical Decoding mass. See [Typical Decoding for Natural Language
|
||
|
Generation](https://arxiv.org/abs/2202.00666) for more information."""
|
||
|
temperature: Optional[float] = 0.8
|
||
|
"""The value used to module the logits distribution."""
|
||
|
repetition_penalty: Optional[float] = None
|
||
|
"""The parameter for repetition penalty. 1.0 means no penalty.
|
||
|
See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details."""
|
||
|
return_full_text: bool = False
|
||
|
"""Whether to prepend the prompt to the generated text"""
|
||
|
truncate: Optional[int] = None
|
||
|
"""Truncate inputs tokens to the given size"""
|
||
|
stop_sequences: List[str] = Field(default_factory=list)
|
||
|
"""Stop generating tokens if a member of `stop_sequences` is generated"""
|
||
|
seed: Optional[int] = None
|
||
|
"""Random sampling seed"""
|
||
|
inference_server_url: str = ""
|
||
|
"""text-generation-inference instance base url"""
|
||
|
timeout: int = 120
|
||
|
"""Timeout in seconds"""
|
||
|
streaming: bool = False
|
||
|
"""Whether to generate a stream of tokens asynchronously"""
|
||
|
do_sample: bool = False
|
||
|
"""Activate logits sampling"""
|
||
|
watermark: bool = False
|
||
|
"""Watermarking with [A Watermark for Large Language Models]
|
||
|
(https://arxiv.org/abs/2301.10226)"""
|
||
|
server_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any text-generation-inference server parameters not explicitly specified"""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `call` not explicitly specified"""
|
||
|
client: Any
|
||
|
async_client: Any
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = get_pydantic_field_names(cls)
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
for field_name in list(values):
|
||
|
if field_name in extra:
|
||
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||
|
if field_name not in all_required_field_names:
|
||
|
logger.warning(
|
||
|
f"""WARNING! {field_name} is not default parameter.
|
||
|
{field_name} was transferred to model_kwargs.
|
||
|
Please confirm that {field_name} is what you intended."""
|
||
|
)
|
||
|
extra[field_name] = values.pop(field_name)
|
||
|
|
||
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||
|
if invalid_model_kwargs:
|
||
|
raise ValueError(
|
||
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||
|
)
|
||
|
|
||
|
values["model_kwargs"] = extra
|
||
|
return values
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that python package exists in environment."""
|
||
|
|
||
|
try:
|
||
|
import text_generation
|
||
|
|
||
|
values["client"] = text_generation.Client(
|
||
|
values["inference_server_url"],
|
||
|
timeout=values["timeout"],
|
||
|
**values["server_kwargs"],
|
||
|
)
|
||
|
values["async_client"] = text_generation.AsyncClient(
|
||
|
values["inference_server_url"],
|
||
|
timeout=values["timeout"],
|
||
|
**values["server_kwargs"],
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import text_generation python package. "
|
||
|
"Please install it with `pip install text_generation`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "huggingface_textgen_inference"
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling text generation inference API."""
|
||
|
return {
|
||
|
"max_new_tokens": self.max_new_tokens,
|
||
|
"top_k": self.top_k,
|
||
|
"top_p": self.top_p,
|
||
|
"typical_p": self.typical_p,
|
||
|
"temperature": self.temperature,
|
||
|
"repetition_penalty": self.repetition_penalty,
|
||
|
"return_full_text": self.return_full_text,
|
||
|
"truncate": self.truncate,
|
||
|
"stop_sequences": self.stop_sequences,
|
||
|
"seed": self.seed,
|
||
|
"do_sample": self.do_sample,
|
||
|
"watermark": self.watermark,
|
||
|
**self.model_kwargs,
|
||
|
}
|
||
|
|
||
|
def _invocation_params(
|
||
|
self, runtime_stop: Optional[List[str]], **kwargs: Any
|
||
|
) -> Dict[str, Any]:
|
||
|
params = {**self._default_params, **kwargs}
|
||
|
params["stop_sequences"] = params["stop_sequences"] + (runtime_stop or [])
|
||
|
return params
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
if self.streaming:
|
||
|
completion = ""
|
||
|
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
||
|
completion += chunk.text
|
||
|
return completion
|
||
|
|
||
|
invocation_params = self._invocation_params(stop, **kwargs)
|
||
|
res = self.client.generate(prompt, **invocation_params)
|
||
|
# remove stop sequences from the end of the generated text
|
||
|
for stop_seq in invocation_params["stop_sequences"]:
|
||
|
if stop_seq in res.generated_text:
|
||
|
res.generated_text = res.generated_text[
|
||
|
: res.generated_text.index(stop_seq)
|
||
|
]
|
||
|
return res.generated_text
|
||
|
|
||
|
async def _acall(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
if self.streaming:
|
||
|
completion = ""
|
||
|
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
|
||
|
completion += chunk.text
|
||
|
return completion
|
||
|
|
||
|
invocation_params = self._invocation_params(stop, **kwargs)
|
||
|
res = await self.async_client.generate(prompt, **invocation_params)
|
||
|
# remove stop sequences from the end of the generated text
|
||
|
for stop_seq in invocation_params["stop_sequences"]:
|
||
|
if stop_seq in res.generated_text:
|
||
|
res.generated_text = res.generated_text[
|
||
|
: res.generated_text.index(stop_seq)
|
||
|
]
|
||
|
return res.generated_text
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[GenerationChunk]:
|
||
|
invocation_params = self._invocation_params(stop, **kwargs)
|
||
|
|
||
|
for res in self.client.generate_stream(prompt, **invocation_params):
|
||
|
# identify stop sequence in generated text, if any
|
||
|
stop_seq_found: Optional[str] = None
|
||
|
for stop_seq in invocation_params["stop_sequences"]:
|
||
|
if stop_seq in res.token.text:
|
||
|
stop_seq_found = stop_seq
|
||
|
|
||
|
# identify text to yield
|
||
|
text: Optional[str] = None
|
||
|
if res.token.special:
|
||
|
text = None
|
||
|
elif stop_seq_found:
|
||
|
text = res.token.text[: res.token.text.index(stop_seq_found)]
|
||
|
else:
|
||
|
text = res.token.text
|
||
|
|
||
|
# yield text, if any
|
||
|
if text:
|
||
|
chunk = GenerationChunk(text=text)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(chunk.text)
|
||
|
|
||
|
# break if stop sequence found
|
||
|
if stop_seq_found:
|
||
|
break
|
||
|
|
||
|
async def _astream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AsyncIterator[GenerationChunk]:
|
||
|
invocation_params = self._invocation_params(stop, **kwargs)
|
||
|
|
||
|
async for res in self.async_client.generate_stream(prompt, **invocation_params):
|
||
|
# identify stop sequence in generated text, if any
|
||
|
stop_seq_found: Optional[str] = None
|
||
|
for stop_seq in invocation_params["stop_sequences"]:
|
||
|
if stop_seq in res.token.text:
|
||
|
stop_seq_found = stop_seq
|
||
|
|
||
|
# identify text to yield
|
||
|
text: Optional[str] = None
|
||
|
if res.token.special:
|
||
|
text = None
|
||
|
elif stop_seq_found:
|
||
|
text = res.token.text[: res.token.text.index(stop_seq_found)]
|
||
|
else:
|
||
|
text = res.token.text
|
||
|
|
||
|
# yield text, if any
|
||
|
if text:
|
||
|
chunk = GenerationChunk(text=text)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
await run_manager.on_llm_new_token(chunk.text)
|
||
|
|
||
|
# break if stop sequence found
|
||
|
if stop_seq_found:
|
||
|
break
|