langchain/libs/community/langchain_community/embeddings/baichuan.py

114 lines
4.4 KiB
Python
Raw Normal View History

from typing import Any, Dict, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings"
# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home).
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB
# (Chinese Multi-Task Embedding Benchmark) leaderboard.
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard
# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding
# An API-key is required to use this embedding model. You can get one by registering
# at https://platform.baichuan-ai.com/docs/text-Embedding.
# BaichuanTextEmbeddings support 512 token window and preduces vectors with
# 1024 dimensions.
# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding.
# Multi-language support is coming soon.
class BaichuanTextEmbeddings(BaseModel, Embeddings):
"""Baichuan Text Embedding models."""
session: Any #: :meta private:
model_name: str = "Baichuan-Text-Embedding"
baichuan_api_key: Optional[SecretStr] = None
@root_validator(allow_reuse=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that auth token exists in environment."""
try:
baichuan_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY")
)
except ValueError as original_exc:
try:
baichuan_api_key = convert_to_secret_str(
get_from_dict_or_env(
values, "baichuan_auth_token", "BAICHUAN_AUTH_TOKEN"
)
)
except ValueError:
raise original_exc
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {baichuan_api_key.get_secret_value()}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
values["session"] = session
return values
def _embed(self, texts: List[str]) -> Optional[List[List[float]]]:
"""Internal method to call Baichuan Embedding API and return embeddings.
Args:
texts: A list of texts to embed.
Returns:
A list of list of floats representing the embeddings, or None if an
error occurs.
"""
try:
response = self.session.post(
BAICHUAN_API_URL, json={"input": texts, "model": self.model_name}
)
# Check if the response status code indicates success
if response.status_code == 200:
resp = response.json()
embeddings = resp.get("data", [])
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0))
# Return just the embeddings
return [result.get("embedding", []) for result in sorted_embeddings]
else:
# Log error or handle unsuccessful response appropriately
print(
f"""Error: Received status code {response.status_code} from
embedding API"""
)
return None
except Exception as e:
# Log the exception or handle it as needed
print(f"Exception occurred while trying to get embeddings: {str(e)}")
return None
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]:
"""Public method to get embeddings for a list of documents.
Args:
texts: The list of texts to embed.
Returns:
A list of embeddings, one for each text, or None if an error occurs.
"""
return self._embed(texts)
def embed_query(self, text: str) -> Optional[List[float]]:
"""Public method to get embedding for a single query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text, or None if an error occurs.
"""
result = self._embed([text])
return result[0] if result is not None else None