2023-12-11 21:53:30 +00:00
|
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, cast
|
|
|
|
|
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
agenerate_from_stream,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
ChatMessage,
|
|
|
|
HumanMessage,
|
|
|
|
SystemMessage,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_core.prompt_values import PromptValue
|
|
|
|
|
|
|
|
from langchain_community.llms.anthropic import _AnthropicCommon
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_one_message_to_text(
|
|
|
|
message: BaseMessage,
|
|
|
|
human_prompt: str,
|
|
|
|
ai_prompt: str,
|
|
|
|
) -> str:
|
|
|
|
content = cast(str, message.content)
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_text = f"\n\n{message.role.capitalize()}: {content}"
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_text = f"{human_prompt} {content}"
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_text = f"{ai_prompt} {content}"
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
message_text = content
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
return message_text
|
|
|
|
|
|
|
|
|
|
|
|
def convert_messages_to_prompt_anthropic(
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
*,
|
|
|
|
human_prompt: str = "\n\nHuman:",
|
|
|
|
ai_prompt: str = "\n\nAssistant:",
|
|
|
|
) -> str:
|
|
|
|
"""Format a list of messages into a full prompt for the Anthropic model
|
|
|
|
Args:
|
|
|
|
messages (List[BaseMessage]): List of BaseMessage to combine.
|
|
|
|
human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:".
|
|
|
|
ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:".
|
|
|
|
Returns:
|
|
|
|
str: Combined string with necessary human_prompt and ai_prompt tags.
|
|
|
|
"""
|
|
|
|
|
|
|
|
messages = messages.copy() # don't mutate the original list
|
|
|
|
if not isinstance(messages[-1], AIMessage):
|
|
|
|
messages.append(AIMessage(content=""))
|
|
|
|
|
|
|
|
text = "".join(
|
|
|
|
_convert_one_message_to_text(message, human_prompt, ai_prompt)
|
|
|
|
for message in messages
|
|
|
|
)
|
|
|
|
|
|
|
|
# trim off the trailing ' ' that might come from the "Assistant: "
|
|
|
|
return text.rstrip()
|
|
|
|
|
|
|
|
|
|
|
|
class ChatAnthropic(BaseChatModel, _AnthropicCommon):
|
|
|
|
"""`Anthropic` chat large language models.
|
|
|
|
|
|
|
|
To use, you should have the ``anthropic`` python package installed, and the
|
|
|
|
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
|
|
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import anthropic
|
|
|
|
from langchain_community.chat_models import ChatAnthropic
|
|
|
|
model = ChatAnthropic(model="<model_name>", anthropic_api_key="my-api-key")
|
|
|
|
"""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"anthropic_api_key": "ANTHROPIC_API_KEY"}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of chat model."""
|
|
|
|
return "anthropic-chat"
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def is_lc_serializable(cls) -> bool:
|
|
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
|
|
return True
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
|
|
"""Get the namespace of the langchain object."""
|
|
|
|
return ["langchain", "chat_models", "anthropic"]
|
|
|
|
|
|
|
|
def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
|
|
|
|
"""Format a list of messages into a full prompt for the Anthropic model
|
|
|
|
Args:
|
|
|
|
messages (List[BaseMessage]): List of BaseMessage to combine.
|
|
|
|
Returns:
|
|
|
|
str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
|
|
|
|
"""
|
|
|
|
prompt_params = {}
|
|
|
|
if self.HUMAN_PROMPT:
|
|
|
|
prompt_params["human_prompt"] = self.HUMAN_PROMPT
|
|
|
|
if self.AI_PROMPT:
|
|
|
|
prompt_params["ai_prompt"] = self.AI_PROMPT
|
|
|
|
return convert_messages_to_prompt_anthropic(messages=messages, **prompt_params)
|
|
|
|
|
|
|
|
def convert_prompt(self, prompt: PromptValue) -> str:
|
|
|
|
return self._convert_messages_to_prompt(prompt.to_messages())
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
prompt = self._convert_messages_to_prompt(messages)
|
|
|
|
params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
|
|
|
|
if stop:
|
|
|
|
params["stop_sequences"] = stop
|
|
|
|
|
|
|
|
stream_resp = self.client.completions.create(**params, stream=True)
|
|
|
|
for data in stream_resp:
|
|
|
|
delta = data.completion
|
2024-01-27 23:16:22 +00:00
|
|
|
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
|
|
|
yield chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
if run_manager:
|
2024-01-27 23:16:22 +00:00
|
|
|
run_manager.on_llm_new_token(delta, chunk=chunk)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
prompt = self._convert_messages_to_prompt(messages)
|
|
|
|
params: Dict[str, Any] = {"prompt": prompt, **self._default_params, **kwargs}
|
|
|
|
if stop:
|
|
|
|
params["stop_sequences"] = stop
|
|
|
|
|
|
|
|
stream_resp = await self.async_client.completions.create(**params, stream=True)
|
|
|
|
async for data in stream_resp:
|
|
|
|
delta = data.completion
|
2024-01-27 23:16:22 +00:00
|
|
|
chunk = ChatGenerationChunk(message=AIMessageChunk(content=delta))
|
|
|
|
yield chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
if run_manager:
|
2024-01-27 23:16:22 +00:00
|
|
|
await run_manager.on_llm_new_token(delta, chunk=chunk)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
prompt = self._convert_messages_to_prompt(
|
|
|
|
messages,
|
|
|
|
)
|
|
|
|
params: Dict[str, Any] = {
|
|
|
|
"prompt": prompt,
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
if stop:
|
|
|
|
params["stop_sequences"] = stop
|
|
|
|
response = self.client.completions.create(**params)
|
|
|
|
completion = response.completion
|
|
|
|
message = AIMessage(content=completion)
|
|
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
|
|
|
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._astream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
prompt = self._convert_messages_to_prompt(
|
|
|
|
messages,
|
|
|
|
)
|
|
|
|
params: Dict[str, Any] = {
|
|
|
|
"prompt": prompt,
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
if stop:
|
|
|
|
params["stop_sequences"] = stop
|
|
|
|
response = await self.async_client.completions.create(**params)
|
|
|
|
completion = response.completion
|
|
|
|
message = AIMessage(content=completion)
|
|
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
|
|
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
|
|
"""Calculate number of tokens."""
|
|
|
|
if not self.count_tokens:
|
|
|
|
raise NameError("Please ensure the anthropic package is loaded")
|
|
|
|
return self.count_tokens(text)
|