langchain/templates/rag-gemini-multi-modal/rag_gemini_multi_modal/chain.py

123 lines
3.9 KiB
Python
Raw Normal View History

import base64
import io
from pathlib import Path
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.messages import HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from PIL import Image
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string.
:param base64_string: A Base64 encoded string of the image to be resized.
:param size: A tuple representing the new size (width, height) for the image.
:return: A Base64 encoded string of the resized image.
"""
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
resized_img = img.resize(size, Image.LANCZOS)
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
resized_image = resize_base64_image(doc, size=(1280, 720))
b64_images.append(resized_image)
return {"images": b64_images}
def img_prompt_func(data_dict, num_images=2):
"""
Gemini prompt for image analysis.
:param data_dict: A dict with images and a user-provided question.
:param num_images: Number of images to include in the prompt.
:return: A list containing message objects for each image and the text prompt.
"""
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are an analyst tasked with answering questions about visual content.\n"
"You will be give a set of image(s) from a slide deck / presentation.\n"
"Use this information to answer the user question. \n"
f"User-provided question: {data_dict['question']}\n\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain,
:param retriever: A function that retrieves the necessary context for the model.
:return: A chain of functions representing the multi-modal RAG process.
"""
# Initialize the multi-modal Large Language Model with specific parameters
model = ChatGoogleGenerativeAI(model="gemini-pro-vision")
# Define the RAG pipeline
chain = (
{
"context": retriever | RunnableLambda(get_resized_images),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| StrOutputParser()
)
return chain
# Load chroma
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
embedding_function=OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
),
)
# Make retriever
retriever_mmembd = vectorstore_mmembd.as_retriever()
# Create RAG chain
chain = multi_modal_rag_chain(retriever_mmembd)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)