2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import importlib.util
|
|
|
|
import logging
|
|
|
|
from typing import Any, List, Mapping, Optional
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import BaseLLM
|
|
|
|
from langchain_core.outputs import Generation, LLMResult
|
|
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
|
|
DEFAULT_MODEL_ID = "gpt2"
|
|
|
|
DEFAULT_TASK = "text-generation"
|
|
|
|
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
|
|
|
|
DEFAULT_BATCH_SIZE = 4
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class HuggingFacePipeline(BaseLLM):
|
|
|
|
"""HuggingFace Pipeline API.
|
|
|
|
|
|
|
|
To use, you should have the ``transformers`` python package installed.
|
|
|
|
|
|
|
|
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
|
|
|
|
|
|
|
|
Example using from_model_id:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import HuggingFacePipeline
|
|
|
|
hf = HuggingFacePipeline.from_model_id(
|
|
|
|
model_id="gpt2",
|
|
|
|
task="text-generation",
|
|
|
|
pipeline_kwargs={"max_new_tokens": 10},
|
|
|
|
)
|
|
|
|
Example passing pipeline in directly:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import HuggingFacePipeline
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
model_id = "gpt2"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
pipe = pipeline(
|
|
|
|
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
|
|
|
)
|
|
|
|
hf = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
"""
|
|
|
|
|
|
|
|
pipeline: Any #: :meta private:
|
|
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
|
|
"""Model name to use."""
|
|
|
|
model_kwargs: Optional[dict] = None
|
|
|
|
"""Keyword arguments passed to the model."""
|
|
|
|
pipeline_kwargs: Optional[dict] = None
|
|
|
|
"""Keyword arguments passed to the pipeline."""
|
|
|
|
batch_size: int = DEFAULT_BATCH_SIZE
|
|
|
|
"""Batch size to use when passing multiple documents to generate."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_model_id(
|
|
|
|
cls,
|
|
|
|
model_id: str,
|
|
|
|
task: str,
|
|
|
|
device: Optional[int] = -1,
|
|
|
|
device_map: Optional[str] = None,
|
|
|
|
model_kwargs: Optional[dict] = None,
|
|
|
|
pipeline_kwargs: Optional[dict] = None,
|
|
|
|
batch_size: int = DEFAULT_BATCH_SIZE,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> HuggingFacePipeline:
|
|
|
|
"""Construct the pipeline object from model_id and task."""
|
|
|
|
try:
|
|
|
|
from transformers import (
|
|
|
|
AutoModelForCausalLM,
|
|
|
|
AutoModelForSeq2SeqLM,
|
|
|
|
AutoTokenizer,
|
|
|
|
)
|
|
|
|
from transformers import pipeline as hf_pipeline
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not import transformers python package. "
|
|
|
|
"Please install it with `pip install transformers`."
|
|
|
|
)
|
|
|
|
|
|
|
|
_model_kwargs = model_kwargs or {}
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if task == "text-generation":
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
elif task in ("text2text-generation", "summarization"):
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Got invalid task {task}, "
|
|
|
|
f"currently only {VALID_TASKS} are supported"
|
|
|
|
)
|
|
|
|
except ImportError as e:
|
|
|
|
raise ValueError(
|
|
|
|
f"Could not load the {task} model due to missing dependencies."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
if tokenizer.pad_token is None:
|
|
|
|
tokenizer.pad_token_id = model.config.eos_token_id
|
|
|
|
|
|
|
|
if (
|
|
|
|
getattr(model, "is_loaded_in_4bit", False)
|
|
|
|
or getattr(model, "is_loaded_in_8bit", False)
|
|
|
|
) and device is not None:
|
|
|
|
logger.warning(
|
|
|
|
f"Setting the `device` argument to None from {device} to avoid "
|
|
|
|
"the error caused by attempting to move the model that was already "
|
|
|
|
"loaded on the GPU using the Accelerate module to the same or "
|
|
|
|
"another device."
|
|
|
|
)
|
|
|
|
device = None
|
|
|
|
|
|
|
|
if device is not None and importlib.util.find_spec("torch") is not None:
|
|
|
|
import torch
|
|
|
|
|
|
|
|
cuda_device_count = torch.cuda.device_count()
|
|
|
|
if device < -1 or (device >= cuda_device_count):
|
|
|
|
raise ValueError(
|
|
|
|
f"Got device=={device}, "
|
|
|
|
f"device is required to be within [-1, {cuda_device_count})"
|
|
|
|
)
|
|
|
|
if device_map is not None and device < 0:
|
|
|
|
device = None
|
|
|
|
if device is not None and device < 0 and cuda_device_count > 0:
|
|
|
|
logger.warning(
|
|
|
|
"Device has %d GPUs available. "
|
|
|
|
"Provide device={deviceId} to `from_model_id` to use available"
|
|
|
|
"GPUs for execution. deviceId is -1 (default) for CPU and "
|
|
|
|
"can be a positive integer associated with CUDA device id.",
|
|
|
|
cuda_device_count,
|
|
|
|
)
|
|
|
|
if "trust_remote_code" in _model_kwargs:
|
|
|
|
_model_kwargs = {
|
|
|
|
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
|
|
|
}
|
|
|
|
_pipeline_kwargs = pipeline_kwargs or {}
|
|
|
|
pipeline = hf_pipeline(
|
|
|
|
task=task,
|
|
|
|
model=model,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
device=device,
|
|
|
|
device_map=device_map,
|
|
|
|
batch_size=batch_size,
|
|
|
|
model_kwargs=_model_kwargs,
|
|
|
|
**_pipeline_kwargs,
|
|
|
|
)
|
|
|
|
if pipeline.task not in VALID_TASKS:
|
|
|
|
raise ValueError(
|
|
|
|
f"Got invalid task {pipeline.task}, "
|
|
|
|
f"currently only {VALID_TASKS} are supported"
|
|
|
|
)
|
|
|
|
return cls(
|
|
|
|
pipeline=pipeline,
|
|
|
|
model_id=model_id,
|
|
|
|
model_kwargs=_model_kwargs,
|
|
|
|
pipeline_kwargs=_pipeline_kwargs,
|
|
|
|
batch_size=batch_size,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
return {
|
|
|
|
"model_id": self.model_id,
|
|
|
|
"model_kwargs": self.model_kwargs,
|
|
|
|
"pipeline_kwargs": self.pipeline_kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
return "huggingface_pipeline"
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
prompts: List[str],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> LLMResult:
|
|
|
|
# List to hold all results
|
|
|
|
text_generations: List[str] = []
|
2024-02-08 21:58:31 +00:00
|
|
|
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
for i in range(0, len(prompts), self.batch_size):
|
|
|
|
batch_prompts = prompts[i : i + self.batch_size]
|
|
|
|
|
|
|
|
# Process batch of prompts
|
2024-02-08 21:58:31 +00:00
|
|
|
responses = self.pipeline(batch_prompts, **pipeline_kwargs)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
# Process each response in the batch
|
|
|
|
for j, response in enumerate(responses):
|
|
|
|
if isinstance(response, list):
|
|
|
|
# if model returns multiple generations, pick the top one
|
|
|
|
response = response[0]
|
|
|
|
|
|
|
|
if self.pipeline.task == "text-generation":
|
|
|
|
try:
|
|
|
|
from transformers.pipelines.text_generation import ReturnType
|
|
|
|
|
|
|
|
remove_prompt = (
|
|
|
|
self.pipeline._postprocess_params.get("return_type")
|
|
|
|
!= ReturnType.NEW_TEXT
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
logger.warning(
|
|
|
|
f"Unable to extract pipeline return_type. "
|
|
|
|
f"Received error:\n\n{e}"
|
|
|
|
)
|
|
|
|
remove_prompt = True
|
|
|
|
if remove_prompt:
|
|
|
|
text = response["generated_text"][len(batch_prompts[j]) :]
|
|
|
|
else:
|
|
|
|
text = response["generated_text"]
|
|
|
|
elif self.pipeline.task == "text2text-generation":
|
|
|
|
text = response["generated_text"]
|
|
|
|
elif self.pipeline.task == "summarization":
|
|
|
|
text = response["summary_text"]
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Got invalid task {self.pipeline.task}, "
|
|
|
|
f"currently only {VALID_TASKS} are supported"
|
|
|
|
)
|
|
|
|
if stop:
|
|
|
|
# Enforce stop tokens
|
|
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
|
|
|
|
# Append the processed text to results
|
|
|
|
text_generations.append(text)
|
|
|
|
|
|
|
|
return LLMResult(
|
|
|
|
generations=[[Generation(text=text)] for text in text_generations]
|
|
|
|
)
|