langchain/libs/core/langchain_core/retrievers.py

276 lines
10 KiB
Python
Raw Normal View History

from __future__ import annotations
import asyncio
import warnings
from abc import ABC, abstractmethod
from functools import partial
from inspect import signature
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.documents import Document
from langchain_core.load.dump import dumpd
from langchain_core.runnables import RunnableConfig, RunnableSerializable
if TYPE_CHECKING:
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
Callbacks,
)
class BaseRetriever(RunnableSerializable[str, List[Document]], ABC):
"""Abstract base class for a Document retrieval system.
A retrieval system is defined as something that can take string queries and return
the most 'relevant' Documents from some source.
Example:
.. code-block:: python
class TFIDFRetriever(BaseRetriever, BaseModel):
vectorizer: Any
docs: List[Document]
tfidf_array: Any
k: int = 4
class Config:
arbitrary_types_allowed = True
def get_relevant_documents(self, query: str) -> List[Document]:
from sklearn.metrics.pairwise import cosine_similarity
# Ip -- (n_docs,x), Op -- (n_docs,n_Feats)
query_vec = self.vectorizer.transform([query])
# Op -- (n_docs,1) -- Cosine Sim with each doc
results = cosine_similarity(self.tfidf_array, query_vec).reshape((-1,))
return [self.docs[i] for i in results.argsort()[-self.k :][::-1]]
""" # noqa: E501
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
_new_arg_supported: bool = False
_expects_other_args: bool = False
tags: Optional[List[str]] = None
"""Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a retriever with its
use case.
"""
metadata: Optional[Dict[str, Any]] = None
"""Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
You can use these to eg identify a specific instance of a retriever with its
use case.
"""
def __init_subclass__(cls, **kwargs: Any) -> None:
super().__init_subclass__(**kwargs)
# Version upgrade for old retrievers that implemented the public
# methods directly.
if cls.get_relevant_documents != BaseRetriever.get_relevant_documents:
warnings.warn(
"Retrievers must implement abstract `_get_relevant_documents` method"
" instead of `get_relevant_documents`",
DeprecationWarning,
)
swap = cls.get_relevant_documents
cls.get_relevant_documents = ( # type: ignore[assignment]
BaseRetriever.get_relevant_documents
)
cls._get_relevant_documents = swap # type: ignore[assignment]
if (
hasattr(cls, "aget_relevant_documents")
and cls.aget_relevant_documents != BaseRetriever.aget_relevant_documents
):
warnings.warn(
"Retrievers must implement abstract `_aget_relevant_documents` method"
" instead of `aget_relevant_documents`",
DeprecationWarning,
)
aswap = cls.aget_relevant_documents
cls.aget_relevant_documents = ( # type: ignore[assignment]
BaseRetriever.aget_relevant_documents
)
cls._aget_relevant_documents = aswap # type: ignore[assignment]
parameters = signature(cls._get_relevant_documents).parameters
cls._new_arg_supported = parameters.get("run_manager") is not None
# If a V1 retriever broke the interface and expects additional arguments
cls._expects_other_args = (
len(set(parameters.keys()) - {"self", "query", "run_manager"}) > 0
)
def invoke(
self, input: str, config: Optional[RunnableConfig] = None
) -> List[Document]:
config = config or {}
return self.get_relevant_documents(
input,
callbacks=config.get("callbacks"),
tags=config.get("tags"),
metadata=config.get("metadata"),
run_name=config.get("run_name"),
)
async def ainvoke(
self,
input: str,
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> List[Document]:
config = config or {}
return await self.aget_relevant_documents(
input,
callbacks=config.get("callbacks"),
tags=config.get("tags"),
metadata=config.get("metadata"),
run_name=config.get("run_name"),
)
@abstractmethod
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
"""Get documents relevant to a query.
Args:
query: String to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
"""Asynchronously get documents relevant to a query.
Args:
query: String to find relevant documents for
run_manager: The callbacks handler to use
Returns:
List of relevant documents
"""
return await asyncio.get_running_loop().run_in_executor(
None, partial(self._get_relevant_documents, run_manager=run_manager), query
)
def get_relevant_documents(
self,
query: str,
*,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
run_name: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Retrieve documents relevant to a query.
Args:
query: string to find relevant documents for
callbacks: Callback manager or list of callbacks
tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
metadata: Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
Returns:
List of relevant documents
"""
from langchain_core.callbacks.manager import CallbackManager
callback_manager = CallbackManager.configure(
callbacks,
None,
verbose=kwargs.get("verbose", False),
inheritable_tags=tags,
local_tags=self.tags,
inheritable_metadata=metadata,
local_metadata=self.metadata,
)
run_manager = callback_manager.on_retriever_start(
dumpd(self),
query,
name=run_name,
**kwargs,
)
try:
_kwargs = kwargs if self._expects_other_args else {}
if self._new_arg_supported:
result = self._get_relevant_documents(
query, run_manager=run_manager, **_kwargs
)
else:
result = self._get_relevant_documents(query, **_kwargs)
except Exception as e:
run_manager.on_retriever_error(e)
raise e
else:
run_manager.on_retriever_end(
result,
**kwargs,
)
return result
async def aget_relevant_documents(
self,
query: str,
*,
callbacks: Callbacks = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
run_name: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Asynchronously get documents relevant to a query.
Args:
query: string to find relevant documents for
callbacks: Callback manager or list of callbacks
tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
metadata: Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in `callbacks`.
Returns:
List of relevant documents
"""
from langchain_core.callbacks.manager import AsyncCallbackManager
callback_manager = AsyncCallbackManager.configure(
callbacks,
None,
verbose=kwargs.get("verbose", False),
inheritable_tags=tags,
local_tags=self.tags,
inheritable_metadata=metadata,
local_metadata=self.metadata,
)
run_manager = await callback_manager.on_retriever_start(
dumpd(self),
query,
name=run_name,
**kwargs,
)
try:
_kwargs = kwargs if self._expects_other_args else {}
if self._new_arg_supported:
result = await self._aget_relevant_documents(
query, run_manager=run_manager, **_kwargs
)
else:
result = await self._aget_relevant_documents(query, **_kwargs)
except Exception as e:
await run_manager.on_retriever_error(e)
raise e
else:
await run_manager.on_retriever_end(
result,
**kwargs,
)
return result