2023-11-16 18:34:04 +00:00
|
|
|
from langchain import hub
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatAnthropic
|
2024-01-03 07:18:15 +00:00
|
|
|
from langchain_community.utilities import WikipediaAPIWrapper
|
2024-02-22 23:58:44 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
2023-11-16 18:34:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Question(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
|
|
|
|
wiki = WikipediaAPIWrapper(top_k_results=5)
|
|
|
|
prompt = hub.pull("bagatur/chain-of-note-wiki")
|
|
|
|
|
|
|
|
llm = ChatAnthropic(model="claude-2")
|
|
|
|
|
|
|
|
|
|
|
|
def format_docs(docs):
|
|
|
|
return "\n\n".join(
|
|
|
|
f"Wikipedia {i+1}:\n{doc.page_content}" for i, doc in enumerate(docs)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
{
|
|
|
|
"passages": RunnableLambda(wiki.load) | format_docs,
|
|
|
|
"question": RunnablePassthrough(),
|
|
|
|
}
|
|
|
|
| prompt
|
|
|
|
| llm
|
|
|
|
| StrOutputParser()
|
|
|
|
).with_types(input_type=Question)
|