mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
214 lines
7.6 KiB
Python
214 lines
7.6 KiB
Python
|
import importlib.util
|
||
|
import logging
|
||
|
from typing import Any, Callable, List, Mapping, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.pydantic_v1 import Extra
|
||
|
|
||
|
from langchain_community.llms.self_hosted import SelfHostedPipeline
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
DEFAULT_MODEL_ID = "gpt2"
|
||
|
DEFAULT_TASK = "text-generation"
|
||
|
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _generate_text(
|
||
|
pipeline: Any,
|
||
|
prompt: str,
|
||
|
*args: Any,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Inference function to send to the remote hardware.
|
||
|
|
||
|
Accepts a Hugging Face pipeline (or more likely,
|
||
|
a key pointing to such a pipeline on the cluster's object store)
|
||
|
and returns generated text.
|
||
|
"""
|
||
|
response = pipeline(prompt, *args, **kwargs)
|
||
|
if pipeline.task == "text-generation":
|
||
|
# Text generation return includes the starter text.
|
||
|
text = response[0]["generated_text"][len(prompt) :]
|
||
|
elif pipeline.task == "text2text-generation":
|
||
|
text = response[0]["generated_text"]
|
||
|
elif pipeline.task == "summarization":
|
||
|
text = response[0]["summary_text"]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Got invalid task {pipeline.task}, "
|
||
|
f"currently only {VALID_TASKS} are supported"
|
||
|
)
|
||
|
if stop is not None:
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
return text
|
||
|
|
||
|
|
||
|
def _load_transformer(
|
||
|
model_id: str = DEFAULT_MODEL_ID,
|
||
|
task: str = DEFAULT_TASK,
|
||
|
device: int = 0,
|
||
|
model_kwargs: Optional[dict] = None,
|
||
|
) -> Any:
|
||
|
"""Inference function to send to the remote hardware.
|
||
|
|
||
|
Accepts a huggingface model_id and returns a pipeline for the task.
|
||
|
"""
|
||
|
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
|
||
|
from transformers import pipeline as hf_pipeline
|
||
|
|
||
|
_model_kwargs = model_kwargs or {}
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
||
|
|
||
|
try:
|
||
|
if task == "text-generation":
|
||
|
model = AutoModelForCausalLM.from_pretrained(model_id, **_model_kwargs)
|
||
|
elif task in ("text2text-generation", "summarization"):
|
||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, **_model_kwargs)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Got invalid task {task}, "
|
||
|
f"currently only {VALID_TASKS} are supported"
|
||
|
)
|
||
|
except ImportError as e:
|
||
|
raise ValueError(
|
||
|
f"Could not load the {task} model due to missing dependencies."
|
||
|
) from e
|
||
|
|
||
|
if importlib.util.find_spec("torch") is not None:
|
||
|
import torch
|
||
|
|
||
|
cuda_device_count = torch.cuda.device_count()
|
||
|
if device < -1 or (device >= cuda_device_count):
|
||
|
raise ValueError(
|
||
|
f"Got device=={device}, "
|
||
|
f"device is required to be within [-1, {cuda_device_count})"
|
||
|
)
|
||
|
if device < 0 and cuda_device_count > 0:
|
||
|
logger.warning(
|
||
|
"Device has %d GPUs available. "
|
||
|
"Provide device={deviceId} to `from_model_id` to use available"
|
||
|
"GPUs for execution. deviceId is -1 for CPU and "
|
||
|
"can be a positive integer associated with CUDA device id.",
|
||
|
cuda_device_count,
|
||
|
)
|
||
|
|
||
|
pipeline = hf_pipeline(
|
||
|
task=task,
|
||
|
model=model,
|
||
|
tokenizer=tokenizer,
|
||
|
device=device,
|
||
|
model_kwargs=_model_kwargs,
|
||
|
)
|
||
|
if pipeline.task not in VALID_TASKS:
|
||
|
raise ValueError(
|
||
|
f"Got invalid task {pipeline.task}, "
|
||
|
f"currently only {VALID_TASKS} are supported"
|
||
|
)
|
||
|
return pipeline
|
||
|
|
||
|
|
||
|
class SelfHostedHuggingFaceLLM(SelfHostedPipeline):
|
||
|
"""HuggingFace Pipeline API to run on self-hosted remote hardware.
|
||
|
|
||
|
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
|
||
|
and Lambda, as well as servers specified
|
||
|
by IP address and SSH credentials (such as on-prem, or another cloud
|
||
|
like Paperspace, Coreweave, etc.).
|
||
|
|
||
|
To use, you should have the ``runhouse`` python package installed.
|
||
|
|
||
|
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
|
||
|
|
||
|
Example using from_model_id:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import SelfHostedHuggingFaceLLM
|
||
|
import runhouse as rh
|
||
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
|
||
|
hf = SelfHostedHuggingFaceLLM(
|
||
|
model_id="google/flan-t5-large", task="text2text-generation",
|
||
|
hardware=gpu
|
||
|
)
|
||
|
Example passing fn that generates a pipeline (bc the pipeline is not serializable):
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import SelfHostedHuggingFaceLLM
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||
|
import runhouse as rh
|
||
|
|
||
|
def get_pipeline():
|
||
|
model_id = "gpt2"
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||
|
pipe = pipeline(
|
||
|
"text-generation", model=model, tokenizer=tokenizer
|
||
|
)
|
||
|
return pipe
|
||
|
hf = SelfHostedHuggingFaceLLM(
|
||
|
model_load_fn=get_pipeline, model_id="gpt2", hardware=gpu)
|
||
|
"""
|
||
|
|
||
|
model_id: str = DEFAULT_MODEL_ID
|
||
|
"""Hugging Face model_id to load the model."""
|
||
|
task: str = DEFAULT_TASK
|
||
|
"""Hugging Face task ("text-generation", "text2text-generation" or
|
||
|
"summarization")."""
|
||
|
device: int = 0
|
||
|
"""Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc."""
|
||
|
model_kwargs: Optional[dict] = None
|
||
|
"""Keyword arguments to pass to the model."""
|
||
|
hardware: Any
|
||
|
"""Remote hardware to send the inference function to."""
|
||
|
model_reqs: List[str] = ["./", "transformers", "torch"]
|
||
|
"""Requirements to install on hardware to inference the model."""
|
||
|
model_load_fn: Callable = _load_transformer
|
||
|
"""Function to load the model remotely on the server."""
|
||
|
inference_fn: Callable = _generate_text #: :meta private:
|
||
|
"""Inference function to send to the remote hardware."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
def __init__(self, **kwargs: Any):
|
||
|
"""Construct the pipeline remotely using an auxiliary function.
|
||
|
|
||
|
The load function needs to be importable to be imported
|
||
|
and run on the server, i.e. in a module and not a REPL or closure.
|
||
|
Then, initialize the remote inference function.
|
||
|
"""
|
||
|
load_fn_kwargs = {
|
||
|
"model_id": kwargs.get("model_id", DEFAULT_MODEL_ID),
|
||
|
"task": kwargs.get("task", DEFAULT_TASK),
|
||
|
"device": kwargs.get("device", 0),
|
||
|
"model_kwargs": kwargs.get("model_kwargs", None),
|
||
|
}
|
||
|
super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs)
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
**{"model_id": self.model_id},
|
||
|
**{"model_kwargs": self.model_kwargs},
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
return "selfhosted_huggingface_pipeline"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
return self.client(
|
||
|
pipeline=self.pipeline_ref, prompt=prompt, stop=stop, **kwargs
|
||
|
)
|