mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
157 lines
5.3 KiB
Python
157 lines
5.3 KiB
Python
|
"""Wrapper around Minimax APIs."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Dict,
|
||
|
List,
|
||
|
Optional,
|
||
|
)
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import (
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class _MinimaxEndpointClient(BaseModel):
|
||
|
"""An API client that talks to a Minimax llm endpoint."""
|
||
|
|
||
|
host: str
|
||
|
group_id: str
|
||
|
api_key: SecretStr
|
||
|
api_url: str
|
||
|
|
||
|
@root_validator(pre=True, allow_reuse=True)
|
||
|
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
if "api_url" not in values:
|
||
|
host = values["host"]
|
||
|
group_id = values["group_id"]
|
||
|
api_url = f"{host}/v1/text/chatcompletion?GroupId={group_id}"
|
||
|
values["api_url"] = api_url
|
||
|
return values
|
||
|
|
||
|
def post(self, request: Any) -> Any:
|
||
|
headers = {"Authorization": f"Bearer {self.api_key.get_secret_value()}"}
|
||
|
response = requests.post(self.api_url, headers=headers, json=request)
|
||
|
# TODO: error handling and automatic retries
|
||
|
if not response.ok:
|
||
|
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
|
||
|
if response.json()["base_resp"]["status_code"] > 0:
|
||
|
raise ValueError(
|
||
|
f"API {response.json()['base_resp']['status_code']}"
|
||
|
f" error: {response.json()['base_resp']['status_msg']}"
|
||
|
)
|
||
|
return response.json()["reply"]
|
||
|
|
||
|
|
||
|
class MinimaxCommon(BaseModel):
|
||
|
"""Common parameters for Minimax large language models."""
|
||
|
|
||
|
_client: _MinimaxEndpointClient
|
||
|
model: str = "abab5.5-chat"
|
||
|
"""Model name to use."""
|
||
|
max_tokens: int = 256
|
||
|
"""Denotes the number of tokens to predict per generation."""
|
||
|
temperature: float = 0.7
|
||
|
"""A non-negative float that tunes the degree of randomness in generation."""
|
||
|
top_p: float = 0.95
|
||
|
"""Total probability mass of tokens to consider at each step."""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||
|
minimax_api_host: Optional[str] = None
|
||
|
minimax_group_id: Optional[str] = None
|
||
|
minimax_api_key: Optional[SecretStr] = None
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["minimax_api_key"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY")
|
||
|
)
|
||
|
values["minimax_group_id"] = get_from_dict_or_env(
|
||
|
values, "minimax_group_id", "MINIMAX_GROUP_ID"
|
||
|
)
|
||
|
# Get custom api url from environment.
|
||
|
values["minimax_api_host"] = get_from_dict_or_env(
|
||
|
values,
|
||
|
"minimax_api_host",
|
||
|
"MINIMAX_API_HOST",
|
||
|
default="https://api.minimax.chat",
|
||
|
)
|
||
|
values["_client"] = _MinimaxEndpointClient(
|
||
|
host=values["minimax_api_host"],
|
||
|
api_key=values["minimax_api_key"],
|
||
|
group_id=values["minimax_group_id"],
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling OpenAI API."""
|
||
|
return {
|
||
|
"model": self.model,
|
||
|
"tokens_to_generate": self.max_tokens,
|
||
|
"temperature": self.temperature,
|
||
|
"top_p": self.top_p,
|
||
|
**self.model_kwargs,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {**{"model": self.model}, **self._default_params}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "minimax"
|
||
|
|
||
|
|
||
|
class Minimax(MinimaxCommon, LLM):
|
||
|
"""Wrapper around Minimax large language models.
|
||
|
To use, you should have the environment variable
|
||
|
``MINIMAX_API_KEY`` and ``MINIMAX_GROUP_ID`` set with your API key,
|
||
|
or pass them as a named parameter to the constructor.
|
||
|
Example:
|
||
|
. code-block:: python
|
||
|
from langchain_community.llms.minimax import Minimax
|
||
|
minimax = Minimax(model="<model_name>", minimax_api_key="my-api-key",
|
||
|
minimax_group_id="my-group-id")
|
||
|
"""
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
r"""Call out to Minimax's completion endpoint to chat
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
response = minimax("Tell me a joke.")
|
||
|
"""
|
||
|
request = self._default_params
|
||
|
request["messages"] = [{"sender_type": "USER", "text": prompt}]
|
||
|
request.update(kwargs)
|
||
|
text = self._client.post(request)
|
||
|
if stop is not None:
|
||
|
# This is required since the stop tokens
|
||
|
# are not enforced by the model parameters
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
|
||
|
return text
|