2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import uuid
|
|
|
|
import warnings
|
|
|
|
from itertools import repeat
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
Iterable,
|
|
|
|
List,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
from langchain_community.docstore.document import Document
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class Yellowbrick(VectorStore):
|
2024-04-11 20:23:27 +00:00
|
|
|
"""Yellowbrick as a vector database.
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.vectorstores import Yellowbrick
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
|
|
...
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embedding: Embeddings,
|
|
|
|
connection_string: str,
|
|
|
|
table: str,
|
|
|
|
) -> None:
|
|
|
|
"""Initialize with yellowbrick client.
|
|
|
|
Args:
|
|
|
|
embedding: Embedding operator
|
|
|
|
connection_string: Format 'postgres://username:password@host:port/database'
|
|
|
|
table: Table used to store / retrieve embeddings from
|
|
|
|
"""
|
|
|
|
|
|
|
|
import psycopg2
|
|
|
|
|
|
|
|
if not isinstance(embedding, Embeddings):
|
|
|
|
warnings.warn("embeddings input must be Embeddings object.")
|
|
|
|
|
|
|
|
self.connection_string = connection_string
|
|
|
|
self._table = table
|
|
|
|
self._embedding = embedding
|
|
|
|
self._connection = psycopg2.connect(connection_string)
|
|
|
|
|
|
|
|
self.__post_init__()
|
|
|
|
|
|
|
|
def __post_init__(
|
|
|
|
self,
|
|
|
|
) -> None:
|
|
|
|
"""Initialize the store."""
|
|
|
|
self.check_database_utf8()
|
|
|
|
self.create_table_if_not_exists()
|
|
|
|
|
|
|
|
def __del__(self) -> None:
|
|
|
|
if self._connection:
|
|
|
|
self._connection.close()
|
|
|
|
|
|
|
|
def create_table_if_not_exists(self) -> None:
|
|
|
|
"""
|
|
|
|
Helper function: create table if not exists
|
|
|
|
"""
|
|
|
|
from psycopg2 import sql
|
|
|
|
|
|
|
|
cursor = self._connection.cursor()
|
|
|
|
cursor.execute(
|
|
|
|
sql.SQL(
|
|
|
|
"CREATE TABLE IF NOT EXISTS {} ( \
|
|
|
|
id UUID, \
|
|
|
|
embedding_id INTEGER, \
|
|
|
|
text VARCHAR(60000), \
|
|
|
|
metadata VARCHAR(1024), \
|
|
|
|
embedding FLOAT)"
|
|
|
|
).format(sql.Identifier(self._table))
|
|
|
|
)
|
|
|
|
self._connection.commit()
|
|
|
|
cursor.close()
|
|
|
|
|
|
|
|
def drop(self, table: str) -> None:
|
|
|
|
"""
|
|
|
|
Helper function: Drop data
|
|
|
|
"""
|
|
|
|
from psycopg2 import sql
|
|
|
|
|
|
|
|
cursor = self._connection.cursor()
|
|
|
|
cursor.execute(sql.SQL("DROP TABLE IF EXISTS {}").format(sql.Identifier(table)))
|
|
|
|
self._connection.commit()
|
|
|
|
cursor.close()
|
|
|
|
|
|
|
|
def check_database_utf8(self) -> bool:
|
|
|
|
"""
|
|
|
|
Helper function: Test the database is UTF-8 encoded
|
|
|
|
"""
|
|
|
|
cursor = self._connection.cursor()
|
|
|
|
query = "SELECT pg_encoding_to_char(encoding) \
|
|
|
|
FROM pg_database \
|
|
|
|
WHERE datname = current_database();"
|
|
|
|
cursor.execute(query)
|
|
|
|
encoding = cursor.fetchone()[0]
|
|
|
|
cursor.close()
|
|
|
|
if encoding.lower() == "utf8" or encoding.lower() == "utf-8":
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
raise Exception(
|
|
|
|
f"Database \
|
|
|
|
'{self.connection_string.split('/')[-1]}' encoding is not UTF-8"
|
|
|
|
)
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Add more texts to the vectorstore index.
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
"""
|
|
|
|
from psycopg2 import sql
|
|
|
|
|
|
|
|
texts = list(texts)
|
|
|
|
cursor = self._connection.cursor()
|
|
|
|
embeddings = self._embedding.embed_documents(list(texts))
|
|
|
|
results = []
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
for id in range(len(embeddings)):
|
|
|
|
doc_uuid = uuid.uuid4()
|
|
|
|
results.append(str(doc_uuid))
|
|
|
|
data_input = [
|
|
|
|
(str(id), embedding_id, text, json.dumps(metadata), embedding)
|
|
|
|
for id, embedding_id, text, metadata, embedding in zip(
|
|
|
|
repeat(doc_uuid),
|
|
|
|
range(len(embeddings[id])),
|
|
|
|
repeat(texts[id]),
|
|
|
|
repeat(metadatas[id]),
|
|
|
|
embeddings[id],
|
|
|
|
)
|
|
|
|
]
|
|
|
|
flattened_input = [val for sublist in data_input for val in sublist]
|
|
|
|
insert_query = sql.SQL(
|
|
|
|
"INSERT INTO {t} \
|
|
|
|
(id, embedding_id, text, metadata, embedding) VALUES {v}"
|
|
|
|
).format(
|
|
|
|
t=sql.Identifier(self._table),
|
|
|
|
v=(
|
|
|
|
sql.SQL(",").join(
|
|
|
|
[
|
|
|
|
sql.SQL("(%s,%s,%s,%s,%s)")
|
|
|
|
for _ in range(len(embeddings[id]))
|
|
|
|
]
|
|
|
|
)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
cursor.execute(insert_query, flattened_input)
|
|
|
|
self._connection.commit()
|
|
|
|
return results
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls: Type[Yellowbrick],
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
connection_string: str = "",
|
|
|
|
table: str = "langchain",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Yellowbrick:
|
|
|
|
"""Add texts to the vectorstore index.
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
connection_string: URI to Yellowbrick instance
|
|
|
|
embedding: Embedding function
|
|
|
|
table: table to store embeddings
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
"""
|
|
|
|
if connection_string is None:
|
|
|
|
raise ValueError("connection_string must be provided")
|
|
|
|
vss = cls(
|
|
|
|
embedding=embedding,
|
|
|
|
connection_string=connection_string,
|
|
|
|
table=table,
|
|
|
|
)
|
|
|
|
vss.add_texts(texts=texts, metadatas=metadatas)
|
|
|
|
return vss
|
|
|
|
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Perform a similarity search with Yellowbrick with vector
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding (List[float]): query embedding
|
|
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
|
|
|
|
|
|
NOTE: Please do not let end-user fill this and always be aware
|
|
|
|
of SQL injection.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document, float]: List of Documents and scores
|
|
|
|
"""
|
|
|
|
from psycopg2 import sql
|
|
|
|
|
|
|
|
cursor = self._connection.cursor()
|
|
|
|
tmp_table = "tmp_" + self._table
|
|
|
|
cursor.execute(
|
|
|
|
sql.SQL(
|
|
|
|
"CREATE TEMPORARY TABLE {} ( \
|
|
|
|
embedding_id INTEGER, embedding FLOAT)"
|
|
|
|
).format(sql.Identifier(tmp_table))
|
|
|
|
)
|
|
|
|
self._connection.commit()
|
|
|
|
|
|
|
|
data_input = [
|
|
|
|
(embedding_id, embedding)
|
|
|
|
for embedding_id, embedding in zip(range(len(embedding)), embedding)
|
|
|
|
]
|
|
|
|
flattened_input = [val for sublist in data_input for val in sublist]
|
|
|
|
insert_query = sql.SQL(
|
|
|
|
"INSERT INTO {t} \
|
|
|
|
(embedding_id, embedding) VALUES {v}"
|
|
|
|
).format(
|
|
|
|
t=sql.Identifier(tmp_table),
|
|
|
|
v=sql.SQL(",").join([sql.SQL("(%s,%s)") for _ in range(len(embedding))]),
|
|
|
|
)
|
|
|
|
cursor.execute(insert_query, flattened_input)
|
|
|
|
self._connection.commit()
|
|
|
|
sql_query = sql.SQL(
|
|
|
|
"SELECT text, \
|
|
|
|
metadata, \
|
|
|
|
sum(v1.embedding * v2.embedding) / \
|
|
|
|
( sqrt(sum(v1.embedding * v1.embedding)) * \
|
|
|
|
sqrt(sum(v2.embedding * v2.embedding))) AS score \
|
|
|
|
FROM {v1} v1 INNER JOIN {v2} v2 \
|
|
|
|
ON v1.embedding_id = v2.embedding_id \
|
|
|
|
GROUP BY v2.id, v2.text, v2.metadata \
|
|
|
|
ORDER BY score DESC \
|
|
|
|
LIMIT %s"
|
|
|
|
).format(v1=sql.Identifier(tmp_table), v2=sql.Identifier(self._table))
|
|
|
|
cursor.execute(sql_query, (k,))
|
|
|
|
results = cursor.fetchall()
|
|
|
|
self.drop(tmp_table)
|
|
|
|
|
|
|
|
documents: List[Tuple[Document, float]] = []
|
|
|
|
for result in results:
|
|
|
|
metadata = json.loads(result[1]) or {}
|
|
|
|
doc = Document(page_content=result[0], metadata=metadata)
|
|
|
|
documents.append((doc, result[2]))
|
|
|
|
|
|
|
|
cursor.close()
|
|
|
|
return documents
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a similarity search with Yellowbrick
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): query string
|
|
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
|
|
|
|
|
|
NOTE: Please do not let end-user fill this and always be aware
|
|
|
|
of SQL injection.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document]: List of Documents
|
|
|
|
"""
|
|
|
|
embedding = self._embedding.embed_query(query)
|
|
|
|
documents = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in documents]
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Perform a similarity search with Yellowbrick
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): query string
|
|
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
|
|
|
|
|
|
NOTE: Please do not let end-user fill this and always be aware
|
|
|
|
of SQL injection.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document]: List of (Document, similarity)
|
|
|
|
"""
|
|
|
|
embedding = self._embedding.embed_query(query)
|
|
|
|
documents = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k
|
|
|
|
)
|
|
|
|
return documents
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Perform a similarity search with Yellowbrick by vectors
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding (List[float]): query embedding
|
|
|
|
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
|
|
|
|
|
|
|
|
NOTE: Please do not let end-user fill this and always be aware
|
|
|
|
of SQL injection.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document]: List of documents
|
|
|
|
"""
|
|
|
|
documents = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in documents]
|