2023-12-11 21:53:30 +00:00
|
|
|
|
import json
|
|
|
|
|
import logging
|
|
|
|
|
import numbers
|
|
|
|
|
from hashlib import sha1
|
|
|
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
|
|
|
|
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlibabaCloudOpenSearchSettings:
|
|
|
|
|
"""Alibaba Cloud Opensearch` client configuration.
|
|
|
|
|
|
|
|
|
|
Attribute:
|
|
|
|
|
endpoint (str) : The endpoint of opensearch instance, You can find it
|
|
|
|
|
from the console of Alibaba Cloud OpenSearch.
|
|
|
|
|
instance_id (str) : The identify of opensearch instance, You can find
|
|
|
|
|
it from the console of Alibaba Cloud OpenSearch.
|
|
|
|
|
username (str) : The username specified when purchasing the instance.
|
|
|
|
|
password (str) : The password specified when purchasing the instance,
|
|
|
|
|
After the instance is created, you can modify it on the console.
|
|
|
|
|
tablename (str): The table name specified during instance configuration.
|
|
|
|
|
field_name_mapping (Dict) : Using field name mapping between opensearch
|
|
|
|
|
vector store and opensearch instance configuration table field names:
|
|
|
|
|
{
|
|
|
|
|
'id': 'The id field name map of index document.',
|
|
|
|
|
'document': 'The text field name map of index document.',
|
|
|
|
|
'embedding': 'In the embedding field of the opensearch instance,
|
|
|
|
|
the values must be in float type and separated by separator,
|
|
|
|
|
default is comma.',
|
|
|
|
|
'metadata_field_x': 'Metadata field mapping includes the mapped
|
|
|
|
|
field name and operator in the mapping value, separated by a comma
|
|
|
|
|
between the mapped field name and the operator.',
|
|
|
|
|
}
|
|
|
|
|
protocol (str): Communication Protocol between SDK and Server, default is http.
|
|
|
|
|
namespace (str) : The instance data will be partitioned based on the "namespace"
|
|
|
|
|
field,If the namespace is enabled, you need to specify the namespace field
|
|
|
|
|
name during initialization, Otherwise, the queries cannot be executed
|
|
|
|
|
correctly.
|
|
|
|
|
embedding_field_separator(str): Delimiter specified for writing vector
|
|
|
|
|
field data, default is comma.
|
|
|
|
|
output_fields: Specify the field list returned when invoking OpenSearch,
|
|
|
|
|
by default it is the value list of the field mapping field.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
endpoint: str,
|
|
|
|
|
instance_id: str,
|
|
|
|
|
username: str,
|
|
|
|
|
password: str,
|
|
|
|
|
table_name: str,
|
|
|
|
|
field_name_mapping: Dict[str, str],
|
|
|
|
|
protocol: str = "http",
|
|
|
|
|
namespace: str = "",
|
|
|
|
|
embedding_field_separator: str = ",",
|
|
|
|
|
output_fields: Optional[List[str]] = None,
|
|
|
|
|
) -> None:
|
|
|
|
|
self.endpoint = endpoint
|
|
|
|
|
self.instance_id = instance_id
|
|
|
|
|
self.protocol = protocol
|
|
|
|
|
self.username = username
|
|
|
|
|
self.password = password
|
|
|
|
|
self.namespace = namespace
|
|
|
|
|
self.table_name = table_name
|
|
|
|
|
self.opt_table_name = "_".join([self.instance_id, self.table_name])
|
|
|
|
|
self.field_name_mapping = field_name_mapping
|
|
|
|
|
self.embedding_field_separator = embedding_field_separator
|
|
|
|
|
if output_fields is None:
|
|
|
|
|
self.output_fields = [
|
|
|
|
|
field.split(",")[0] for field in self.field_name_mapping.values()
|
|
|
|
|
]
|
|
|
|
|
self.inverse_field_name_mapping: Dict[str, str] = {}
|
|
|
|
|
for key, value in self.field_name_mapping.items():
|
|
|
|
|
self.inverse_field_name_mapping[value.split(",")[0]] = key
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, item: str) -> Any:
|
|
|
|
|
return getattr(self, item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_metadata(fields: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
"""Create metadata from fields.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
fields: The fields of the document. The fields must be a dict.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
metadata: The metadata of the document. The metadata must be a dict.
|
|
|
|
|
"""
|
|
|
|
|
metadata: Dict[str, Any] = {}
|
|
|
|
|
for key, value in fields.items():
|
|
|
|
|
if key == "id" or key == "document" or key == "embedding":
|
|
|
|
|
continue
|
|
|
|
|
metadata[key] = value
|
|
|
|
|
return metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AlibabaCloudOpenSearch(VectorStore):
|
|
|
|
|
"""`Alibaba Cloud OpenSearch` vector store."""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
embedding: Embeddings,
|
|
|
|
|
config: AlibabaCloudOpenSearchSettings,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> None:
|
|
|
|
|
try:
|
|
|
|
|
from alibabacloud_ha3engine_vector import client, models
|
|
|
|
|
from alibabacloud_tea_util import models as util_models
|
|
|
|
|
except ImportError:
|
|
|
|
|
raise ImportError(
|
|
|
|
|
"Could not import alibaba cloud opensearch python package. "
|
|
|
|
|
"Please install it with `pip install alibabacloud-ha3engine-vector`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.config = config
|
|
|
|
|
self.embedding = embedding
|
|
|
|
|
|
|
|
|
|
self.runtime = util_models.RuntimeOptions(
|
|
|
|
|
connect_timeout=5000,
|
|
|
|
|
read_timeout=10000,
|
|
|
|
|
autoretry=False,
|
|
|
|
|
ignore_ssl=False,
|
|
|
|
|
max_idle_conns=50,
|
|
|
|
|
)
|
|
|
|
|
self.ha3_engine_client = client.Client(
|
|
|
|
|
models.Config(
|
|
|
|
|
endpoint=config.endpoint,
|
|
|
|
|
instance_id=config.instance_id,
|
|
|
|
|
protocol=config.protocol,
|
|
|
|
|
access_user_name=config.username,
|
|
|
|
|
access_pass_word=config.password,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.options_headers: Dict[str, str] = {}
|
|
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
|
self,
|
|
|
|
|
texts: Iterable[str],
|
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> List[str]:
|
|
|
|
|
"""Insert documents into the instance..
|
|
|
|
|
Args:
|
|
|
|
|
texts: The text segments to be inserted into the vector storage,
|
|
|
|
|
should not be empty.
|
|
|
|
|
metadatas: Metadata information.
|
|
|
|
|
Returns:
|
|
|
|
|
id_list: List of document IDs.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _upsert(push_doc_list: List[Dict]) -> List[str]:
|
|
|
|
|
if push_doc_list is None or len(push_doc_list) == 0:
|
|
|
|
|
return []
|
|
|
|
|
try:
|
|
|
|
|
push_request = models.PushDocumentsRequest(
|
|
|
|
|
self.options_headers, push_doc_list
|
|
|
|
|
)
|
|
|
|
|
push_response = self.ha3_engine_client.push_documents(
|
|
|
|
|
self.config.opt_table_name, field_name_map["id"], push_request
|
|
|
|
|
)
|
|
|
|
|
json_response = json.loads(push_response.body)
|
|
|
|
|
if json_response["status"] == "OK":
|
|
|
|
|
return [
|
|
|
|
|
push_doc["fields"][field_name_map["id"]]
|
|
|
|
|
for push_doc in push_doc_list
|
|
|
|
|
]
|
|
|
|
|
return []
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"add doc to endpoint:{self.config.endpoint} "
|
|
|
|
|
f"instance_id:{self.config.instance_id} failed.",
|
|
|
|
|
e,
|
|
|
|
|
)
|
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
from alibabacloud_ha3engine_vector import models
|
|
|
|
|
|
|
|
|
|
id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts]
|
|
|
|
|
embeddings = self.embedding.embed_documents(list(texts))
|
|
|
|
|
metadatas = metadatas or [{} for _ in texts]
|
|
|
|
|
field_name_map = self.config.field_name_mapping
|
|
|
|
|
add_doc_list = []
|
|
|
|
|
text_list = list(texts)
|
|
|
|
|
for idx, doc_id in enumerate(id_list):
|
|
|
|
|
embedding = embeddings[idx] if idx < len(embeddings) else None
|
|
|
|
|
metadata = metadatas[idx] if idx < len(metadatas) else None
|
|
|
|
|
text = text_list[idx] if idx < len(text_list) else None
|
|
|
|
|
add_doc: Dict[str, Any] = dict()
|
|
|
|
|
add_doc_fields: Dict[str, Any] = dict()
|
|
|
|
|
add_doc_fields.__setitem__(field_name_map["id"], doc_id)
|
|
|
|
|
add_doc_fields.__setitem__(field_name_map["document"], text)
|
|
|
|
|
if embedding is not None:
|
|
|
|
|
add_doc_fields.__setitem__(
|
|
|
|
|
field_name_map["embedding"],
|
|
|
|
|
self.config.embedding_field_separator.join(
|
|
|
|
|
str(unit) for unit in embedding
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
if metadata is not None:
|
|
|
|
|
for md_key, md_value in metadata.items():
|
|
|
|
|
add_doc_fields.__setitem__(
|
|
|
|
|
field_name_map[md_key].split(",")[0], md_value
|
|
|
|
|
)
|
|
|
|
|
add_doc.__setitem__("fields", add_doc_fields)
|
|
|
|
|
add_doc.__setitem__("cmd", "add")
|
|
|
|
|
add_doc_list.append(add_doc)
|
|
|
|
|
return _upsert(add_doc_list)
|
|
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
|
self,
|
|
|
|
|
query: str,
|
|
|
|
|
k: int = 4,
|
|
|
|
|
search_filter: Optional[Dict[str, Any]] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> List[Document]:
|
|
|
|
|
"""Perform similarity retrieval based on text.
|
|
|
|
|
Args:
|
|
|
|
|
query: Vectorize text for retrieval.,should not be empty.
|
|
|
|
|
k: top n.
|
|
|
|
|
search_filter: Additional filtering conditions.
|
|
|
|
|
Returns:
|
|
|
|
|
document_list: List of documents.
|
|
|
|
|
"""
|
|
|
|
|
embedding = self.embedding.embed_query(query)
|
|
|
|
|
return self.create_results(
|
|
|
|
|
self.inner_embedding_query(
|
|
|
|
|
embedding=embedding, search_filter=search_filter, k=k
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def similarity_search_with_relevance_scores(
|
|
|
|
|
self,
|
|
|
|
|
query: str,
|
|
|
|
|
k: int = 4,
|
|
|
|
|
search_filter: Optional[dict] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
|
"""Perform similarity retrieval based on text with scores.
|
|
|
|
|
Args:
|
|
|
|
|
query: Vectorize text for retrieval.,should not be empty.
|
|
|
|
|
k: top n.
|
|
|
|
|
search_filter: Additional filtering conditions.
|
|
|
|
|
Returns:
|
|
|
|
|
document_list: List of documents.
|
|
|
|
|
"""
|
|
|
|
|
embedding: List[float] = self.embedding.embed_query(query)
|
|
|
|
|
return self.create_results_with_score(
|
|
|
|
|
self.inner_embedding_query(
|
|
|
|
|
embedding=embedding, search_filter=search_filter, k=k
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
|
self,
|
|
|
|
|
embedding: List[float],
|
|
|
|
|
k: int = 4,
|
|
|
|
|
search_filter: Optional[dict] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> List[Document]:
|
|
|
|
|
"""Perform retrieval directly using vectors.
|
|
|
|
|
Args:
|
|
|
|
|
embedding: vectors.
|
|
|
|
|
k: top n.
|
|
|
|
|
search_filter: Additional filtering conditions.
|
|
|
|
|
Returns:
|
|
|
|
|
document_list: List of documents.
|
|
|
|
|
"""
|
|
|
|
|
return self.create_results(
|
|
|
|
|
self.inner_embedding_query(
|
|
|
|
|
embedding=embedding, search_filter=search_filter, k=k
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def inner_embedding_query(
|
|
|
|
|
self,
|
|
|
|
|
embedding: List[float],
|
|
|
|
|
search_filter: Optional[Dict[str, Any]] = None,
|
|
|
|
|
k: int = 4,
|
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
|
def generate_filter_query() -> str:
|
|
|
|
|
if search_filter is None:
|
|
|
|
|
return ""
|
|
|
|
|
filter_clause = " AND ".join(
|
|
|
|
|
[
|
|
|
|
|
create_filter(md_key, md_value)
|
|
|
|
|
for md_key, md_value in search_filter.items()
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
return filter_clause
|
|
|
|
|
|
|
|
|
|
def create_filter(md_key: str, md_value: Any) -> str:
|
|
|
|
|
md_filter_expr = self.config.field_name_mapping[md_key]
|
|
|
|
|
if md_filter_expr is None:
|
|
|
|
|
return ""
|
|
|
|
|
expr = md_filter_expr.split(",")
|
|
|
|
|
if len(expr) != 2:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"filter {md_filter_expr} express is not correct, "
|
|
|
|
|
f"must contain mapping field and operator."
|
|
|
|
|
)
|
|
|
|
|
return ""
|
|
|
|
|
md_filter_key = expr[0].strip()
|
|
|
|
|
md_filter_operator = expr[1].strip()
|
|
|
|
|
if isinstance(md_value, numbers.Number):
|
|
|
|
|
return f"{md_filter_key} {md_filter_operator} {md_value}"
|
|
|
|
|
return f'{md_filter_key}{md_filter_operator}"{md_value}"'
|
|
|
|
|
|
|
|
|
|
def search_data() -> Dict[str, Any]:
|
|
|
|
|
request = QueryRequest(
|
|
|
|
|
table_name=self.config.table_name,
|
|
|
|
|
namespace=self.config.namespace,
|
|
|
|
|
vector=embedding,
|
|
|
|
|
include_vector=True,
|
|
|
|
|
output_fields=self.config.output_fields,
|
|
|
|
|
filter=generate_filter_query(),
|
|
|
|
|
top_k=k,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
query_result = self.ha3_engine_client.query(request)
|
|
|
|
|
return json.loads(query_result.body)
|
|
|
|
|
|
|
|
|
|
from alibabacloud_ha3engine_vector.models import QueryRequest
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
json_response = search_data()
|
|
|
|
|
if (
|
|
|
|
|
"errorCode" in json_response
|
|
|
|
|
and "errorMsg" in json_response
|
|
|
|
|
and len(json_response["errorMsg"]) > 0
|
|
|
|
|
):
|
|
|
|
|
logger.error(
|
|
|
|
|
f"query {self.config.endpoint} {self.config.instance_id} "
|
|
|
|
|
f"failed:{json_response['errorMsg']}."
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
return json_response
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"query instance endpoint:{self.config.endpoint} "
|
|
|
|
|
f"instance_id:{self.config.instance_id} failed.",
|
|
|
|
|
e,
|
|
|
|
|
)
|
|
|
|
|
return {}
|
|
|
|
|
|
|
|
|
|
def create_results(self, json_result: Dict[str, Any]) -> List[Document]:
|
|
|
|
|
"""Assemble documents."""
|
|
|
|
|
items = json_result["result"]
|
|
|
|
|
query_result_list: List[Document] = []
|
|
|
|
|
for item in items:
|
|
|
|
|
if (
|
|
|
|
|
"fields" not in item
|
|
|
|
|
or self.config.field_name_mapping["document"] not in item["fields"]
|
|
|
|
|
):
|
2024-02-05 19:22:06 +00:00
|
|
|
|
query_result_list.append(Document()) # type: ignore[call-arg]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
else:
|
|
|
|
|
fields = item["fields"]
|
|
|
|
|
query_result_list.append(
|
|
|
|
|
Document(
|
|
|
|
|
page_content=fields[self.config.field_name_mapping["document"]],
|
|
|
|
|
metadata=self.create_inverse_metadata(fields),
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
return query_result_list
|
|
|
|
|
|
|
|
|
|
def create_inverse_metadata(self, fields: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
"""Create metadata from fields.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
fields: The fields of the document. The fields must be a dict.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
metadata: The metadata of the document. The metadata must be a dict.
|
|
|
|
|
"""
|
|
|
|
|
metadata: Dict[str, Any] = {}
|
|
|
|
|
for key, value in fields.items():
|
|
|
|
|
if key == "id" or key == "document" or key == "embedding":
|
|
|
|
|
continue
|
|
|
|
|
metadata[self.config.inverse_field_name_mapping[key]] = value
|
|
|
|
|
return metadata
|
|
|
|
|
|
|
|
|
|
def create_results_with_score(
|
|
|
|
|
self, json_result: Dict[str, Any]
|
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
|
"""Parsing the returned results with scores.
|
|
|
|
|
Args:
|
|
|
|
|
json_result: Results from OpenSearch query.
|
|
|
|
|
Returns:
|
|
|
|
|
query_result_list: Results with scores.
|
|
|
|
|
"""
|
|
|
|
|
items = json_result["result"]
|
|
|
|
|
query_result_list: List[Tuple[Document, float]] = []
|
|
|
|
|
for item in items:
|
|
|
|
|
fields = item["fields"]
|
|
|
|
|
query_result_list.append(
|
|
|
|
|
(
|
|
|
|
|
Document(
|
|
|
|
|
page_content=fields[self.config.field_name_mapping["document"]],
|
|
|
|
|
metadata=self.create_inverse_metadata(fields),
|
|
|
|
|
),
|
|
|
|
|
float(item["score"]),
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
return query_result_list
|
|
|
|
|
|
|
|
|
|
def delete_documents_with_texts(self, texts: List[str]) -> bool:
|
|
|
|
|
"""Delete documents based on their page content.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
texts: List of document page content.
|
|
|
|
|
Returns:
|
|
|
|
|
Whether the deletion was successful or not.
|
|
|
|
|
"""
|
|
|
|
|
id_list = [sha1(t.encode("utf-8")).hexdigest() for t in texts]
|
|
|
|
|
return self.delete_documents_with_document_id(id_list)
|
|
|
|
|
|
|
|
|
|
def delete_documents_with_document_id(self, id_list: List[str]) -> bool:
|
|
|
|
|
"""Delete documents based on their IDs.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
id_list: List of document IDs.
|
|
|
|
|
Returns:
|
|
|
|
|
Whether the deletion was successful or not.
|
|
|
|
|
"""
|
|
|
|
|
if id_list is None or len(id_list) == 0:
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
from alibabacloud_ha3engine_vector import models
|
|
|
|
|
|
|
|
|
|
delete_doc_list = []
|
|
|
|
|
for doc_id in id_list:
|
|
|
|
|
delete_doc_list.append(
|
|
|
|
|
{
|
|
|
|
|
"fields": {self.config.field_name_mapping["id"]: doc_id},
|
|
|
|
|
"cmd": "delete",
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
delete_request = models.PushDocumentsRequest(
|
|
|
|
|
self.options_headers, delete_doc_list
|
|
|
|
|
)
|
|
|
|
|
try:
|
|
|
|
|
delete_response = self.ha3_engine_client.push_documents(
|
|
|
|
|
self.config.opt_table_name,
|
|
|
|
|
self.config.field_name_mapping["id"],
|
|
|
|
|
delete_request,
|
|
|
|
|
)
|
|
|
|
|
json_response = json.loads(delete_response.body)
|
|
|
|
|
return json_response["status"] == "OK"
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"delete doc from :{self.config.endpoint} "
|
|
|
|
|
f"instance_id:{self.config.instance_id} failed.",
|
|
|
|
|
e,
|
|
|
|
|
)
|
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def from_texts(
|
|
|
|
|
cls,
|
|
|
|
|
texts: List[str],
|
|
|
|
|
embedding: Embeddings,
|
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
|
config: Optional[AlibabaCloudOpenSearchSettings] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> "AlibabaCloudOpenSearch":
|
|
|
|
|
"""Create alibaba cloud opensearch vector store instance.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
texts: The text segments to be inserted into the vector storage,
|
|
|
|
|
should not be empty.
|
|
|
|
|
embedding: Embedding function, Embedding function.
|
|
|
|
|
config: Alibaba OpenSearch instance configuration.
|
|
|
|
|
metadatas: Metadata information.
|
|
|
|
|
Returns:
|
|
|
|
|
AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance.
|
|
|
|
|
"""
|
|
|
|
|
if texts is None or len(texts) == 0:
|
|
|
|
|
raise Exception("the inserted text segments, should not be empty.")
|
|
|
|
|
|
|
|
|
|
if embedding is None:
|
|
|
|
|
raise Exception("the embeddings should not be empty.")
|
|
|
|
|
|
|
|
|
|
if config is None:
|
|
|
|
|
raise Exception("config should not be none.")
|
|
|
|
|
|
|
|
|
|
ctx = cls(embedding, config, **kwargs)
|
|
|
|
|
ctx.add_texts(texts=texts, metadatas=metadatas)
|
|
|
|
|
return ctx
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def from_documents(
|
|
|
|
|
cls,
|
|
|
|
|
documents: List[Document],
|
|
|
|
|
embedding: Embeddings,
|
|
|
|
|
config: Optional[AlibabaCloudOpenSearchSettings] = None,
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
) -> "AlibabaCloudOpenSearch":
|
|
|
|
|
"""Create alibaba cloud opensearch vector store instance.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
documents: Documents to be inserted into the vector storage,
|
|
|
|
|
should not be empty.
|
|
|
|
|
embedding: Embedding function, Embedding function.
|
|
|
|
|
config: Alibaba OpenSearch instance configuration.
|
|
|
|
|
ids: Specify the ID for the inserted document. If left empty, the ID will be
|
|
|
|
|
automatically generated based on the text content.
|
|
|
|
|
Returns:
|
|
|
|
|
AlibabaCloudOpenSearch: Alibaba cloud opensearch vector store instance.
|
|
|
|
|
"""
|
|
|
|
|
if documents is None or len(documents) == 0:
|
|
|
|
|
raise Exception("the inserted documents, should not be empty.")
|
|
|
|
|
|
|
|
|
|
if embedding is None:
|
|
|
|
|
raise Exception("the embeddings should not be empty.")
|
|
|
|
|
|
|
|
|
|
if config is None:
|
|
|
|
|
raise Exception("config can't be none")
|
|
|
|
|
|
|
|
|
|
texts = [d.page_content for d in documents]
|
|
|
|
|
metadatas = [d.metadata for d in documents]
|
|
|
|
|
return cls.from_texts(
|
|
|
|
|
texts=texts,
|
|
|
|
|
embedding=embedding,
|
|
|
|
|
metadatas=metadatas,
|
|
|
|
|
config=config,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|