mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
218 lines
7.8 KiB
Python
218 lines
7.8 KiB
Python
|
"""Wrapper around Fireworks AI's Completion API."""
|
||
|
|
||
|
import logging
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
import requests
|
||
|
from aiohttp import ClientSession
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import (
|
||
|
convert_to_secret_str,
|
||
|
get_from_dict_or_env,
|
||
|
get_pydantic_field_names,
|
||
|
)
|
||
|
from langchain_core.utils.utils import build_extra_kwargs
|
||
|
|
||
|
from langchain_fireworks.version import __version__
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Fireworks(LLM):
|
||
|
"""LLM models from `Fireworks`.
|
||
|
|
||
|
To use, you'll need an API key which you can find here:
|
||
|
https://fireworks.ai This can be passed in as init param
|
||
|
``fireworks_api_key`` or set as environment variable ``FIREWORKS_API_KEY``.
|
||
|
|
||
|
Fireworks AI API reference: https://readme.fireworks.ai/
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
response = fireworks.generate(["Tell me a joke."])
|
||
|
"""
|
||
|
|
||
|
base_url: str = "https://api.fireworks.ai/inference/v1/completions"
|
||
|
"""Base inference API URL."""
|
||
|
fireworks_api_key: SecretStr = Field(default=None, alias="api_key")
|
||
|
"""Fireworks AI API key. Get it here: https://fireworks.ai"""
|
||
|
model: str
|
||
|
"""Model name. Available models listed here:
|
||
|
https://readme.fireworks.ai/
|
||
|
"""
|
||
|
temperature: Optional[float] = None
|
||
|
"""Model temperature."""
|
||
|
top_p: Optional[float] = None
|
||
|
"""Used to dynamically adjust the number of choices for each predicted token based
|
||
|
on the cumulative probabilities. A value of 1 will always yield the same
|
||
|
output. A temperature less than 1 favors more correctness and is appropriate
|
||
|
for question answering or summarization. A value greater than 1 introduces more
|
||
|
randomness in the output.
|
||
|
"""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||
|
top_k: Optional[int] = None
|
||
|
"""Used to limit the number of choices for the next predicted word or token. It
|
||
|
specifies the maximum number of tokens to consider at each step, based on their
|
||
|
probability of occurrence. This technique helps to speed up the generation
|
||
|
process and can improve the quality of the generated text by focusing on the
|
||
|
most likely options.
|
||
|
"""
|
||
|
max_tokens: Optional[int] = None
|
||
|
"""The maximum number of tokens to generate."""
|
||
|
repetition_penalty: Optional[float] = None
|
||
|
"""A number that controls the diversity of generated text by reducing the
|
||
|
likelihood of repeated sequences. Higher values decrease repetition.
|
||
|
"""
|
||
|
logprobs: Optional[int] = None
|
||
|
"""An integer that specifies how many top token log probabilities are included in
|
||
|
the response for each token generation step.
|
||
|
"""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
allow_population_by_field_name = True
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = get_pydantic_field_names(cls)
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
values["model_kwargs"] = build_extra_kwargs(
|
||
|
extra, values, all_required_field_names
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key exists in environment."""
|
||
|
values["fireworks_api_key"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY")
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of model."""
|
||
|
return "fireworks"
|
||
|
|
||
|
def _format_output(self, output: dict) -> str:
|
||
|
return output["choices"][0]["text"]
|
||
|
|
||
|
@staticmethod
|
||
|
def get_user_agent() -> str:
|
||
|
return f"langchain-fireworks/{__version__}"
|
||
|
|
||
|
@property
|
||
|
def default_params(self) -> Dict[str, Any]:
|
||
|
return {
|
||
|
"model": self.model,
|
||
|
"temperature": self.temperature,
|
||
|
"top_p": self.top_p,
|
||
|
"top_k": self.top_k,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
"repetition_penalty": self.repetition_penalty,
|
||
|
}
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to Fireworks's text generation endpoint.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model..
|
||
|
"""
|
||
|
headers = {
|
||
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
||
|
"Content-Type": "application/json",
|
||
|
}
|
||
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
||
|
payload: Dict[str, Any] = {
|
||
|
**self.default_params,
|
||
|
"prompt": prompt,
|
||
|
"stop": stop_to_use,
|
||
|
**kwargs,
|
||
|
}
|
||
|
|
||
|
# filter None values to not pass them to the http payload
|
||
|
payload = {k: v for k, v in payload.items() if v is not None}
|
||
|
response = requests.post(url=self.base_url, json=payload, headers=headers)
|
||
|
|
||
|
if response.status_code >= 500:
|
||
|
raise Exception(f"Fireworks Server: Error {response.status_code}")
|
||
|
elif response.status_code >= 400:
|
||
|
raise ValueError(f"Fireworks received an invalid payload: {response.text}")
|
||
|
elif response.status_code != 200:
|
||
|
raise Exception(
|
||
|
f"Fireworks returned an unexpected response with status "
|
||
|
f"{response.status_code}: {response.text}"
|
||
|
)
|
||
|
|
||
|
data = response.json()
|
||
|
output = self._format_output(data)
|
||
|
|
||
|
return output
|
||
|
|
||
|
async def _acall(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call Fireworks model to get predictions based on the prompt.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
"""
|
||
|
headers = {
|
||
|
"Authorization": f"Bearer {self.fireworks_api_key.get_secret_value()}",
|
||
|
"Content-Type": "application/json",
|
||
|
}
|
||
|
stop_to_use = stop[0] if stop and len(stop) == 1 else stop
|
||
|
payload: Dict[str, Any] = {
|
||
|
**self.default_params,
|
||
|
"prompt": prompt,
|
||
|
"stop": stop_to_use,
|
||
|
**kwargs,
|
||
|
}
|
||
|
|
||
|
# filter None values to not pass them to the http payload
|
||
|
payload = {k: v for k, v in payload.items() if v is not None}
|
||
|
async with ClientSession() as session:
|
||
|
async with session.post(
|
||
|
self.base_url, json=payload, headers=headers
|
||
|
) as response:
|
||
|
if response.status >= 500:
|
||
|
raise Exception(f"Fireworks Server: Error {response.status}")
|
||
|
elif response.status >= 400:
|
||
|
raise ValueError(
|
||
|
f"Fireworks received an invalid payload: {response.text}"
|
||
|
)
|
||
|
elif response.status != 200:
|
||
|
raise Exception(
|
||
|
f"Fireworks returned an unexpected response with status "
|
||
|
f"{response.status}: {response.text}"
|
||
|
)
|
||
|
|
||
|
response_json = await response.json()
|
||
|
output = self._format_output(response_json)
|
||
|
return output
|