mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
153 lines
5.2 KiB
Python
153 lines
5.2 KiB
Python
|
import logging
|
||
|
from typing import Any, Dict, List, Mapping, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class GooseAI(LLM):
|
||
|
"""GooseAI large language models.
|
||
|
|
||
|
To use, you should have the ``openai`` python package installed, and the
|
||
|
environment variable ``GOOSEAI_API_KEY`` set with your API key.
|
||
|
|
||
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
||
|
in, even if not explicitly saved on this class.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import GooseAI
|
||
|
gooseai = GooseAI(model_name="gpt-neo-20b")
|
||
|
|
||
|
"""
|
||
|
|
||
|
client: Any
|
||
|
|
||
|
model_name: str = "gpt-neo-20b"
|
||
|
"""Model name to use"""
|
||
|
|
||
|
temperature: float = 0.7
|
||
|
"""What sampling temperature to use"""
|
||
|
|
||
|
max_tokens: int = 256
|
||
|
"""The maximum number of tokens to generate in the completion.
|
||
|
-1 returns as many tokens as possible given the prompt and
|
||
|
the models maximal context size."""
|
||
|
|
||
|
top_p: float = 1
|
||
|
"""Total probability mass of tokens to consider at each step."""
|
||
|
|
||
|
min_tokens: int = 1
|
||
|
"""The minimum number of tokens to generate in the completion."""
|
||
|
|
||
|
frequency_penalty: float = 0
|
||
|
"""Penalizes repeated tokens according to frequency."""
|
||
|
|
||
|
presence_penalty: float = 0
|
||
|
"""Penalizes repeated tokens."""
|
||
|
|
||
|
n: int = 1
|
||
|
"""How many completions to generate for each prompt."""
|
||
|
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||
|
|
||
|
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
|
||
|
"""Adjust the probability of specific tokens being generated."""
|
||
|
|
||
|
gooseai_api_key: Optional[SecretStr] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic config."""
|
||
|
|
||
|
extra = Extra.ignore
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||
|
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
for field_name in list(values):
|
||
|
if field_name not in all_required_field_names:
|
||
|
if field_name in extra:
|
||
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||
|
logger.warning(
|
||
|
f"""WARNING! {field_name} is not default parameter.
|
||
|
{field_name} was transferred to model_kwargs.
|
||
|
Please confirm that {field_name} is what you intended."""
|
||
|
)
|
||
|
extra[field_name] = values.pop(field_name)
|
||
|
values["model_kwargs"] = extra
|
||
|
return values
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
gooseai_api_key = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "gooseai_api_key", "GOOSEAI_API_KEY")
|
||
|
)
|
||
|
values["gooseai_api_key"] = gooseai_api_key
|
||
|
try:
|
||
|
import openai
|
||
|
|
||
|
openai.api_key = gooseai_api_key.get_secret_value()
|
||
|
openai.api_base = "https://api.goose.ai/v1"
|
||
|
values["client"] = openai.Completion
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import openai python package. "
|
||
|
"Please install it with `pip install openai`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling GooseAI API."""
|
||
|
normal_params = {
|
||
|
"temperature": self.temperature,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
"top_p": self.top_p,
|
||
|
"min_tokens": self.min_tokens,
|
||
|
"frequency_penalty": self.frequency_penalty,
|
||
|
"presence_penalty": self.presence_penalty,
|
||
|
"n": self.n,
|
||
|
"logit_bias": self.logit_bias,
|
||
|
}
|
||
|
return {**normal_params, **self.model_kwargs}
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {**{"model_name": self.model_name}, **self._default_params}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "gooseai"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call the GooseAI API."""
|
||
|
params = self._default_params
|
||
|
if stop is not None:
|
||
|
if "stop" in params:
|
||
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
params["stop"] = stop
|
||
|
|
||
|
params = {**params, **kwargs}
|
||
|
|
||
|
response = self.client.create(engine=self.model_name, prompt=prompt, **params)
|
||
|
text = response.choices[0].text
|
||
|
return text
|