mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
354 lines
13 KiB
Python
354 lines
13 KiB
Python
|
import logging
|
||
|
import os
|
||
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import BaseLLM
|
||
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class WatsonxLLM(BaseLLM):
|
||
|
"""
|
||
|
IBM watsonx.ai large language models.
|
||
|
|
||
|
To use, you should have ``ibm_watson_machine_learning`` python package installed,
|
||
|
and the environment variable ``WATSONX_APIKEY`` set with your API key, or pass
|
||
|
it as a named parameter to the constructor.
|
||
|
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames
|
||
|
parameters = {
|
||
|
GenTextParamsMetaNames.DECODING_METHOD: "sample",
|
||
|
GenTextParamsMetaNames.MAX_NEW_TOKENS: 100,
|
||
|
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
|
||
|
GenTextParamsMetaNames.TEMPERATURE: 0.5,
|
||
|
GenTextParamsMetaNames.TOP_K: 50,
|
||
|
GenTextParamsMetaNames.TOP_P: 1,
|
||
|
}
|
||
|
|
||
|
from langchain_community.llms import WatsonxLLM
|
||
|
llm = WatsonxLLM(
|
||
|
model_id="google/flan-ul2",
|
||
|
url="https://us-south.ml.cloud.ibm.com",
|
||
|
apikey="*****",
|
||
|
project_id="*****",
|
||
|
params=parameters,
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
model_id: str = ""
|
||
|
"""Type of model to use."""
|
||
|
|
||
|
project_id: str = ""
|
||
|
"""ID of the Watson Studio project."""
|
||
|
|
||
|
space_id: str = ""
|
||
|
"""ID of the Watson Studio space."""
|
||
|
|
||
|
url: Optional[SecretStr] = None
|
||
|
"""Url to Watson Machine Learning instance"""
|
||
|
|
||
|
apikey: Optional[SecretStr] = None
|
||
|
"""Apikey to Watson Machine Learning instance"""
|
||
|
|
||
|
token: Optional[SecretStr] = None
|
||
|
"""Token to Watson Machine Learning instance"""
|
||
|
|
||
|
password: Optional[SecretStr] = None
|
||
|
"""Password to Watson Machine Learning instance"""
|
||
|
|
||
|
username: Optional[SecretStr] = None
|
||
|
"""Username to Watson Machine Learning instance"""
|
||
|
|
||
|
instance_id: Optional[SecretStr] = None
|
||
|
"""Instance_id of Watson Machine Learning instance"""
|
||
|
|
||
|
version: Optional[SecretStr] = None
|
||
|
"""Version of Watson Machine Learning instance"""
|
||
|
|
||
|
params: Optional[dict] = None
|
||
|
"""Model parameters to use during generate requests."""
|
||
|
|
||
|
verify: Union[str, bool] = ""
|
||
|
"""User can pass as verify one of following:
|
||
|
the path to a CA_BUNDLE file
|
||
|
the path of directory with certificates of trusted CAs
|
||
|
True - default path to truststore will be taken
|
||
|
False - no verification will be made"""
|
||
|
|
||
|
streaming: bool = False
|
||
|
""" Whether to stream the results or not. """
|
||
|
|
||
|
watsonx_model: Any
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@classmethod
|
||
|
def is_lc_serializable(cls) -> bool:
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def lc_secrets(self) -> Dict[str, str]:
|
||
|
return {
|
||
|
"url": "WATSONX_URL",
|
||
|
"apikey": "WATSONX_APIKEY",
|
||
|
"token": "WATSONX_TOKEN",
|
||
|
"password": "WATSONX_PASSWORD",
|
||
|
"username": "WATSONX_USERNAME",
|
||
|
"instance_id": "WATSONX_INSTANCE_ID",
|
||
|
}
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that credentials and python package exists in environment."""
|
||
|
values["url"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "url", "WATSONX_URL")
|
||
|
)
|
||
|
if "cloud.ibm.com" in values.get("url", "").get_secret_value():
|
||
|
values["apikey"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
||
|
)
|
||
|
else:
|
||
|
if (
|
||
|
not values["token"]
|
||
|
and "WATSONX_TOKEN" not in os.environ
|
||
|
and not values["password"]
|
||
|
and "WATSONX_PASSWORD" not in os.environ
|
||
|
and not values["apikey"]
|
||
|
and "WATSONX_APIKEY" not in os.environ
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"Did not find 'token', 'password' or 'apikey',"
|
||
|
" please add an environment variable"
|
||
|
" `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' "
|
||
|
"which contains it,"
|
||
|
" or pass 'token', 'password' or 'apikey'"
|
||
|
" as a named parameter."
|
||
|
)
|
||
|
elif values["token"] or "WATSONX_TOKEN" in os.environ:
|
||
|
values["token"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "token", "WATSONX_TOKEN")
|
||
|
)
|
||
|
elif values["password"] or "WATSONX_PASSWORD" in os.environ:
|
||
|
values["password"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "password", "WATSONX_PASSWORD")
|
||
|
)
|
||
|
values["username"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
||
|
)
|
||
|
elif values["apikey"] or "WATSONX_APIKEY" in os.environ:
|
||
|
values["apikey"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
||
|
)
|
||
|
values["username"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
||
|
)
|
||
|
if not values["instance_id"] or "WATSONX_INSTANCE_ID" not in os.environ:
|
||
|
values["instance_id"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "instance_id", "WATSONX_INSTANCE_ID")
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
from ibm_watson_machine_learning.foundation_models import Model
|
||
|
|
||
|
credentials = {
|
||
|
"url": values["url"].get_secret_value() if values["url"] else None,
|
||
|
"apikey": values["apikey"].get_secret_value()
|
||
|
if values["apikey"]
|
||
|
else None,
|
||
|
"token": values["token"].get_secret_value()
|
||
|
if values["token"]
|
||
|
else None,
|
||
|
"password": values["password"].get_secret_value()
|
||
|
if values["password"]
|
||
|
else None,
|
||
|
"username": values["username"].get_secret_value()
|
||
|
if values["username"]
|
||
|
else None,
|
||
|
"instance_id": values["instance_id"].get_secret_value()
|
||
|
if values["instance_id"]
|
||
|
else None,
|
||
|
"version": values["version"].get_secret_value()
|
||
|
if values["version"]
|
||
|
else None,
|
||
|
}
|
||
|
credentials_without_none_value = {
|
||
|
key: value for key, value in credentials.items() if value is not None
|
||
|
}
|
||
|
|
||
|
watsonx_model = Model(
|
||
|
model_id=values["model_id"],
|
||
|
credentials=credentials_without_none_value,
|
||
|
params=values["params"],
|
||
|
project_id=values["project_id"],
|
||
|
space_id=values["space_id"],
|
||
|
verify=values["verify"],
|
||
|
)
|
||
|
values["watsonx_model"] = watsonx_model
|
||
|
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import ibm_watson_machine_learning python package. "
|
||
|
"Please install it with `pip install ibm_watson_machine_learning`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
"model_id": self.model_id,
|
||
|
"params": self.params,
|
||
|
"project_id": self.project_id,
|
||
|
"space_id": self.space_id,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "IBM watsonx.ai"
|
||
|
|
||
|
@staticmethod
|
||
|
def _extract_token_usage(
|
||
|
response: Optional[List[Dict[str, Any]]] = None,
|
||
|
) -> Dict[str, Any]:
|
||
|
if response is None:
|
||
|
return {"generated_token_count": 0, "input_token_count": 0}
|
||
|
|
||
|
input_token_count = 0
|
||
|
generated_token_count = 0
|
||
|
|
||
|
def get_count_value(key: str, result: Dict[str, Any]) -> int:
|
||
|
return result.get(key, 0) or 0
|
||
|
|
||
|
for res in response:
|
||
|
results = res.get("results")
|
||
|
if results:
|
||
|
input_token_count += get_count_value("input_token_count", results[0])
|
||
|
generated_token_count += get_count_value(
|
||
|
"generated_token_count", results[0]
|
||
|
)
|
||
|
|
||
|
return {
|
||
|
"generated_token_count": generated_token_count,
|
||
|
"input_token_count": input_token_count,
|
||
|
}
|
||
|
|
||
|
def _create_llm_result(self, response: List[dict]) -> LLMResult:
|
||
|
"""Create the LLMResult from the choices and prompts."""
|
||
|
generations = []
|
||
|
for res in response:
|
||
|
results = res.get("results")
|
||
|
if results:
|
||
|
finish_reason = results[0].get("stop_reason")
|
||
|
gen = Generation(
|
||
|
text=results[0].get("generated_text"),
|
||
|
generation_info={"finish_reason": finish_reason},
|
||
|
)
|
||
|
generations.append([gen])
|
||
|
final_token_usage = self._extract_token_usage(response)
|
||
|
llm_output = {"token_usage": final_token_usage, "model_id": self.model_id}
|
||
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call the IBM watsonx.ai inference endpoint.
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
run_manager: Optional callback manager.
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = watsonxllm("What is a molecule")
|
||
|
"""
|
||
|
result = self._generate(
|
||
|
prompts=[prompt], stop=stop, run_manager=run_manager, **kwargs
|
||
|
)
|
||
|
return result.generations[0][0].text
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
"""Call the IBM watsonx.ai inference endpoint which then generate the response.
|
||
|
Args:
|
||
|
prompts: List of strings (prompts) to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
run_manager: Optional callback manager.
|
||
|
Returns:
|
||
|
The full LLMResult output.
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = watsonxllm.generate(["What is a molecule"])
|
||
|
"""
|
||
|
should_stream = stream if stream is not None else self.streaming
|
||
|
if should_stream:
|
||
|
if len(prompts) > 1:
|
||
|
raise ValueError(
|
||
|
f"WatsonxLLM currently only supports single prompt, got {prompts}"
|
||
|
)
|
||
|
generation = GenerationChunk(text="")
|
||
|
stream_iter = self._stream(
|
||
|
prompts[0], stop=stop, run_manager=run_manager, **kwargs
|
||
|
)
|
||
|
for chunk in stream_iter:
|
||
|
if generation is None:
|
||
|
generation = chunk
|
||
|
else:
|
||
|
generation += chunk
|
||
|
assert generation is not None
|
||
|
return LLMResult(generations=[[generation]])
|
||
|
else:
|
||
|
response = self.watsonx_model.generate(prompt=prompts)
|
||
|
return self._create_llm_result(response)
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[GenerationChunk]:
|
||
|
"""Call the IBM watsonx.ai inference endpoint which then streams the response.
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
run_manager: Optional callback manager.
|
||
|
Returns:
|
||
|
The iterator which yields generation chunks.
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = watsonxllm.stream("What is a molecule")
|
||
|
for chunk in response:
|
||
|
print(chunk, end='')
|
||
|
"""
|
||
|
for chunk in self.watsonx_model.generate_text_stream(prompt=prompt):
|
||
|
if chunk:
|
||
|
yield GenerationChunk(text=chunk)
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(chunk)
|