mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
215 lines
7.1 KiB
Python
215 lines
7.1 KiB
Python
|
import logging
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.outputs import Generation, LLMResult
|
||
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
EXAMPLE_URL = "https://clarifai.com/openai/chat-completion/models/GPT-4"
|
||
|
|
||
|
|
||
|
class Clarifai(LLM):
|
||
|
"""Clarifai large language models.
|
||
|
|
||
|
To use, you should have an account on the Clarifai platform,
|
||
|
the ``clarifai`` python package installed, and the
|
||
|
environment variable ``CLARIFAI_PAT`` set with your PAT key,
|
||
|
or pass it as a named parameter to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import Clarifai
|
||
|
clarifai_llm = Clarifai(user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
|
||
|
(or)
|
||
|
clarifai_llm = Clarifai(model_url=EXAMPLE_URL)
|
||
|
"""
|
||
|
|
||
|
model_url: Optional[str] = None
|
||
|
"""Model url to use."""
|
||
|
model_id: Optional[str] = None
|
||
|
"""Model id to use."""
|
||
|
model_version_id: Optional[str] = None
|
||
|
"""Model version id to use."""
|
||
|
app_id: Optional[str] = None
|
||
|
"""Clarifai application id to use."""
|
||
|
user_id: Optional[str] = None
|
||
|
"""Clarifai user id to use."""
|
||
|
pat: Optional[str] = None
|
||
|
"""Clarifai personal access token to use."""
|
||
|
api_base: str = "https://api.clarifai.com"
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that we have all required info to access Clarifai
|
||
|
platform and python package exists in environment."""
|
||
|
values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT")
|
||
|
user_id = values.get("user_id")
|
||
|
app_id = values.get("app_id")
|
||
|
model_id = values.get("model_id")
|
||
|
model_url = values.get("model_url")
|
||
|
|
||
|
if model_url is not None and model_id is not None:
|
||
|
raise ValueError("Please provide either model_url or model_id, not both.")
|
||
|
|
||
|
if model_url is None and model_id is None:
|
||
|
raise ValueError("Please provide one of model_url or model_id.")
|
||
|
|
||
|
if model_url is None and model_id is not None:
|
||
|
if user_id is None or app_id is None:
|
||
|
raise ValueError("Please provide a user_id and app_id.")
|
||
|
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling Clarifai API."""
|
||
|
return {}
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
**{
|
||
|
"model_url": self.model_url,
|
||
|
"user_id": self.user_id,
|
||
|
"app_id": self.app_id,
|
||
|
"model_id": self.model_id,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "clarifai"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
inference_params: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to Clarfai's PostModelOutputs endpoint.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = clarifai_llm("Tell me a joke.")
|
||
|
"""
|
||
|
# If version_id None, Defaults to the latest model version
|
||
|
try:
|
||
|
from clarifai.client.model import Model
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import clarifai python package. "
|
||
|
"Please install it with `pip install clarifai`."
|
||
|
)
|
||
|
if self.pat is not None:
|
||
|
pat = self.pat
|
||
|
if self.model_url is not None:
|
||
|
_model_init = Model(url=self.model_url, pat=pat)
|
||
|
else:
|
||
|
_model_init = Model(
|
||
|
model_id=self.model_id,
|
||
|
user_id=self.user_id,
|
||
|
app_id=self.app_id,
|
||
|
pat=pat,
|
||
|
)
|
||
|
try:
|
||
|
(inference_params := {}) if inference_params is None else inference_params
|
||
|
predict_response = _model_init.predict_by_bytes(
|
||
|
bytes(prompt, "utf-8"),
|
||
|
input_type="text",
|
||
|
inference_params=inference_params,
|
||
|
)
|
||
|
text = predict_response.outputs[0].data.text.raw
|
||
|
if stop is not None:
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
|
||
|
except Exception as e:
|
||
|
logger.error(f"Predict failed, exception: {e}")
|
||
|
|
||
|
return text
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
inference_params: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
"""Run the LLM on the given prompt and input."""
|
||
|
|
||
|
# TODO: add caching here.
|
||
|
try:
|
||
|
from clarifai.client.input import Inputs
|
||
|
from clarifai.client.model import Model
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import clarifai python package. "
|
||
|
"Please install it with `pip install clarifai`."
|
||
|
)
|
||
|
if self.pat is not None:
|
||
|
pat = self.pat
|
||
|
if self.model_url is not None:
|
||
|
_model_init = Model(url=self.model_url, pat=pat)
|
||
|
else:
|
||
|
_model_init = Model(
|
||
|
model_id=self.model_id,
|
||
|
user_id=self.user_id,
|
||
|
app_id=self.app_id,
|
||
|
pat=pat,
|
||
|
)
|
||
|
|
||
|
generations = []
|
||
|
batch_size = 32
|
||
|
input_obj = Inputs(pat=pat)
|
||
|
try:
|
||
|
for i in range(0, len(prompts), batch_size):
|
||
|
batch = prompts[i : i + batch_size]
|
||
|
input_batch = [
|
||
|
input_obj.get_text_input(input_id=str(id), raw_text=inp)
|
||
|
for id, inp in enumerate(batch)
|
||
|
]
|
||
|
(
|
||
|
inference_params := {}
|
||
|
) if inference_params is None else inference_params
|
||
|
predict_response = _model_init.predict(
|
||
|
inputs=input_batch, inference_params=inference_params
|
||
|
)
|
||
|
|
||
|
for output in predict_response.outputs:
|
||
|
if stop is not None:
|
||
|
text = enforce_stop_tokens(output.data.text.raw, stop)
|
||
|
else:
|
||
|
text = output.data.text.raw
|
||
|
|
||
|
generations.append([Generation(text=text)])
|
||
|
|
||
|
except Exception as e:
|
||
|
logger.error(f"Predict failed, exception: {e}")
|
||
|
|
||
|
return LLMResult(generations=generations)
|