mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
280 lines
10 KiB
Python
280 lines
10 KiB
Python
|
"""Wrapper around Anyscale Endpoint"""
|
||
|
from typing import (
|
||
|
Any,
|
||
|
AsyncIterator,
|
||
|
Dict,
|
||
|
Iterator,
|
||
|
List,
|
||
|
Mapping,
|
||
|
Optional,
|
||
|
Set,
|
||
|
Tuple,
|
||
|
cast,
|
||
|
)
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.openai import (
|
||
|
BaseOpenAI,
|
||
|
acompletion_with_retry,
|
||
|
completion_with_retry,
|
||
|
)
|
||
|
|
||
|
|
||
|
def update_token_usage(
|
||
|
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
|
||
|
) -> None:
|
||
|
"""Update token usage."""
|
||
|
_keys_to_use = keys.intersection(response["usage"])
|
||
|
for _key in _keys_to_use:
|
||
|
if _key not in token_usage:
|
||
|
token_usage[_key] = response["usage"][_key]
|
||
|
else:
|
||
|
token_usage[_key] += response["usage"][_key]
|
||
|
|
||
|
|
||
|
def create_llm_result(
|
||
|
choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str
|
||
|
) -> LLMResult:
|
||
|
"""Create the LLMResult from the choices and prompts."""
|
||
|
generations = []
|
||
|
for i, _ in enumerate(prompts):
|
||
|
choice = choices[i]
|
||
|
generations.append(
|
||
|
[
|
||
|
Generation(
|
||
|
text=choice["message"]["content"],
|
||
|
generation_info=dict(
|
||
|
finish_reason=choice.get("finish_reason"),
|
||
|
logprobs=choice.get("logprobs"),
|
||
|
),
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
llm_output = {"token_usage": token_usage, "model_name": model_name}
|
||
|
return LLMResult(generations=generations, llm_output=llm_output)
|
||
|
|
||
|
|
||
|
class Anyscale(BaseOpenAI):
|
||
|
"""Anyscale large language models.
|
||
|
|
||
|
To use, you should have the environment variable ``ANYSCALE_API_BASE`` and
|
||
|
``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named
|
||
|
parameter to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
from langchain_community.llms import Anyscale
|
||
|
anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE",
|
||
|
anyscale_api_key="ANYSCALE_API_KEY",
|
||
|
model_name="meta-llama/Llama-2-7b-chat-hf")
|
||
|
# To leverage Ray for parallel processing
|
||
|
@ray.remote(num_cpus=1)
|
||
|
def send_query(llm, text):
|
||
|
resp = llm(text)
|
||
|
return resp
|
||
|
futures = [send_query.remote(anyscalellm, text) for text in texts]
|
||
|
results = ray.get(futures)
|
||
|
"""
|
||
|
|
||
|
"""Key word arguments to pass to the model."""
|
||
|
anyscale_api_base: Optional[str] = None
|
||
|
anyscale_api_key: Optional[SecretStr] = None
|
||
|
|
||
|
prefix_messages: List = Field(default_factory=list)
|
||
|
|
||
|
@classmethod
|
||
|
def is_lc_serializable(cls) -> bool:
|
||
|
return False
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["anyscale_api_base"] = get_from_dict_or_env(
|
||
|
values, "anyscale_api_base", "ANYSCALE_API_BASE"
|
||
|
)
|
||
|
values["anyscale_api_key"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY")
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
import openai
|
||
|
|
||
|
## Always create ChatComplete client, replacing the legacy Complete client
|
||
|
values["client"] = openai.ChatCompletion
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import openai python package. "
|
||
|
"Please install it with `pip install openai`."
|
||
|
)
|
||
|
if values["streaming"] and values["n"] > 1:
|
||
|
raise ValueError("Cannot stream results when n > 1.")
|
||
|
if values["streaming"] and values["best_of"] > 1:
|
||
|
raise ValueError("Cannot stream results when best_of > 1.")
|
||
|
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
**{"model_name": self.model_name},
|
||
|
**super()._identifying_params,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _invocation_params(self) -> Dict[str, Any]:
|
||
|
"""Get the parameters used to invoke the model."""
|
||
|
openai_creds: Dict[str, Any] = {
|
||
|
"api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(),
|
||
|
"api_base": self.anyscale_api_base,
|
||
|
}
|
||
|
return {**openai_creds, **{"model": self.model_name}, **super()._default_params}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "Anyscale LLM"
|
||
|
|
||
|
def _get_chat_messages(
|
||
|
self, prompts: List[str], stop: Optional[List[str]] = None
|
||
|
) -> Tuple:
|
||
|
if len(prompts) > 1:
|
||
|
raise ValueError(
|
||
|
f"Anyscale currently only supports single prompt, got {prompts}"
|
||
|
)
|
||
|
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
||
|
params: Dict[str, Any] = self._invocation_params
|
||
|
if stop is not None:
|
||
|
if "stop" in params:
|
||
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
params["stop"] = stop
|
||
|
if params.get("max_tokens") == -1:
|
||
|
# for Chat api, omitting max_tokens is equivalent to having no limit
|
||
|
del params["max_tokens"]
|
||
|
return messages, params
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[GenerationChunk]:
|
||
|
messages, params = self._get_chat_messages([prompt], stop)
|
||
|
params = {**params, **kwargs, "stream": True}
|
||
|
for stream_resp in completion_with_retry(
|
||
|
self, messages=messages, run_manager=run_manager, **params
|
||
|
):
|
||
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||
|
chunk = GenerationChunk(text=token)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(token, chunk=chunk)
|
||
|
|
||
|
async def _astream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> AsyncIterator[GenerationChunk]:
|
||
|
messages, params = self._get_chat_messages([prompt], stop)
|
||
|
params = {**params, **kwargs, "stream": True}
|
||
|
async for stream_resp in await acompletion_with_retry(
|
||
|
self, messages=messages, run_manager=run_manager, **params
|
||
|
):
|
||
|
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||
|
chunk = GenerationChunk(text=token)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
await run_manager.on_llm_new_token(token, chunk=chunk)
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
choices = []
|
||
|
token_usage: Dict[str, int] = {}
|
||
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
||
|
for prompt in prompts:
|
||
|
if self.streaming:
|
||
|
generation: Optional[GenerationChunk] = None
|
||
|
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
||
|
if generation is None:
|
||
|
generation = chunk
|
||
|
else:
|
||
|
generation += chunk
|
||
|
assert generation is not None
|
||
|
choices.append(
|
||
|
{
|
||
|
"message": {"content": generation.text},
|
||
|
"finish_reason": generation.generation_info.get("finish_reason")
|
||
|
if generation.generation_info
|
||
|
else None,
|
||
|
"logprobs": generation.generation_info.get("logprobs")
|
||
|
if generation.generation_info
|
||
|
else None,
|
||
|
}
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
messages, params = self._get_chat_messages([prompt], stop)
|
||
|
params = {**params, **kwargs}
|
||
|
response = completion_with_retry(
|
||
|
self, messages=messages, run_manager=run_manager, **params
|
||
|
)
|
||
|
choices.extend(response["choices"])
|
||
|
update_token_usage(_keys, response, token_usage)
|
||
|
return create_llm_result(choices, prompts, token_usage, self.model_name)
|
||
|
|
||
|
async def _agenerate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> LLMResult:
|
||
|
choices = []
|
||
|
token_usage: Dict[str, int] = {}
|
||
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
|
||
|
for prompt in prompts:
|
||
|
messages = self.prefix_messages + [{"role": "user", "content": prompt}]
|
||
|
if self.streaming:
|
||
|
generation: Optional[GenerationChunk] = None
|
||
|
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
|
||
|
if generation is None:
|
||
|
generation = chunk
|
||
|
else:
|
||
|
generation += chunk
|
||
|
assert generation is not None
|
||
|
choices.append(
|
||
|
{
|
||
|
"message": {"content": generation.text},
|
||
|
"finish_reason": generation.generation_info.get("finish_reason")
|
||
|
if generation.generation_info
|
||
|
else None,
|
||
|
"logprobs": generation.generation_info.get("logprobs")
|
||
|
if generation.generation_info
|
||
|
else None,
|
||
|
}
|
||
|
)
|
||
|
else:
|
||
|
messages, params = self._get_chat_messages([prompt], stop)
|
||
|
params = {**params, **kwargs}
|
||
|
response = await acompletion_with_retry(
|
||
|
self, messages=messages, run_manager=run_manager, **params
|
||
|
)
|
||
|
choices.extend(response["choices"])
|
||
|
update_token_usage(_keys, response, token_usage)
|
||
|
return create_llm_result(choices, prompts, token_usage, self.model_name)
|