2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Iterator,
|
|
|
|
List,
|
|
|
|
Mapping,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessage,
|
|
|
|
ChatMessageChunk,
|
|
|
|
FunctionMessage,
|
|
|
|
FunctionMessageChunk,
|
|
|
|
HumanMessage,
|
|
|
|
HumanMessageChunk,
|
|
|
|
SystemMessage,
|
|
|
|
SystemMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import (
|
|
|
|
ChatGeneration,
|
|
|
|
ChatGenerationChunk,
|
|
|
|
ChatResult,
|
|
|
|
GenerationChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from requests.exceptions import HTTPError
|
|
|
|
from tenacity import (
|
|
|
|
RetryCallState,
|
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
2023-12-19 13:58:24 +00:00
|
|
|
"""Convert a dict to a message."""
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
role = _dict["role"]
|
|
|
|
if role == "user":
|
|
|
|
return HumanMessage(content=_dict["content"])
|
|
|
|
elif role == "assistant":
|
|
|
|
content = _dict.get("content", "") or ""
|
|
|
|
if _dict.get("function_call"):
|
|
|
|
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
|
|
|
else:
|
|
|
|
additional_kwargs = {}
|
|
|
|
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
|
|
|
elif role == "system":
|
|
|
|
return SystemMessage(content=_dict["content"])
|
|
|
|
elif role == "function":
|
|
|
|
return FunctionMessage(content=_dict["content"], name=_dict["name"])
|
|
|
|
else:
|
|
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_message_to_dict(message: BaseMessage) -> dict:
|
2023-12-19 13:58:24 +00:00
|
|
|
"""Convert a message to a dict."""
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
message_dict: Dict[str, Any]
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
if "function_call" in message.additional_kwargs:
|
|
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
|
|
# If function call only, content is None not empty string
|
|
|
|
if message_dict["content"] == "":
|
|
|
|
message_dict["content"] = None
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
message_dict = {"role": "system", "content": message.content}
|
|
|
|
elif isinstance(message, FunctionMessage):
|
|
|
|
message_dict = {
|
|
|
|
"role": "function",
|
|
|
|
"content": message.content,
|
|
|
|
"name": message.name,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
if "name" in message.additional_kwargs:
|
|
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
|
|
|
def _stream_response_to_generation_chunk(
|
|
|
|
stream_response: Dict[str, Any],
|
|
|
|
length: int,
|
|
|
|
) -> GenerationChunk:
|
|
|
|
"""Convert a stream response to a generation chunk.
|
|
|
|
|
|
|
|
As the low level API implement is different from openai and other llm.
|
|
|
|
Stream response of Tongyi is not split into chunks, but all data generated before.
|
|
|
|
For example, the answer 'Hi Pickle Rick! How can I assist you today?'
|
|
|
|
Other llm will stream answer:
|
|
|
|
'Hi Pickle',
|
|
|
|
' Rick!',
|
|
|
|
' How can I assist you today?'.
|
|
|
|
|
|
|
|
Tongyi answer:
|
|
|
|
'Hi Pickle',
|
|
|
|
'Hi Pickle Rick!',
|
|
|
|
'Hi Pickle Rick! How can I assist you today?'.
|
|
|
|
|
|
|
|
As the GenerationChunk is implemented with chunks. Only return full_text[length:]
|
|
|
|
for new chunk.
|
|
|
|
"""
|
|
|
|
full_text = stream_response["output"]["text"]
|
|
|
|
text = full_text[length:]
|
|
|
|
finish_reason = stream_response["output"].get("finish_reason", None)
|
|
|
|
|
|
|
|
return GenerationChunk(
|
|
|
|
text=text,
|
|
|
|
generation_info=dict(
|
|
|
|
finish_reason=finish_reason,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(
|
|
|
|
llm: ChatTongyi,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
) -> Callable[[Any], Any]:
|
|
|
|
def _before_sleep(retry_state: RetryCallState) -> None:
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_retry(retry_state)
|
|
|
|
return None
|
|
|
|
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 4
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(retry_if_exception_type(HTTPError)),
|
|
|
|
before_sleep=_before_sleep,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
|
|
_dict: Mapping[str, Any],
|
|
|
|
default_class: Type[BaseMessageChunk],
|
|
|
|
length: int,
|
|
|
|
) -> BaseMessageChunk:
|
|
|
|
role = _dict.get("role")
|
|
|
|
full_content = _dict.get("content") or ""
|
|
|
|
content = full_content[length:]
|
|
|
|
if _dict.get("function_call"):
|
|
|
|
additional_kwargs = {"function_call": dict(_dict["function_call"])}
|
|
|
|
else:
|
|
|
|
additional_kwargs = {}
|
|
|
|
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
|
|
return HumanMessageChunk(content=content)
|
|
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
|
|
return SystemMessageChunk(content=content)
|
|
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
|
|
elif role or default_class == ChatMessageChunk:
|
|
|
|
return ChatMessageChunk(content=content, role=role)
|
|
|
|
else:
|
|
|
|
return default_class(content=content)
|
|
|
|
|
|
|
|
|
|
|
|
class ChatTongyi(BaseChatModel):
|
|
|
|
"""Alibaba Tongyi Qwen chat models API.
|
|
|
|
|
|
|
|
To use, you should have the ``dashscope`` python package installed,
|
|
|
|
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
|
|
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import Tongyi
|
|
|
|
Tongyi_chat = ChatTongyi()
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_serializable(self) -> bool:
|
|
|
|
return True
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
model_name: str = Field(default="qwen-turbo", alias="model")
|
|
|
|
|
|
|
|
"""Model name to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
|
|
top_p: float = 0.8
|
|
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
|
|
|
|
dashscope_api_key: Optional[str] = None
|
|
|
|
"""Dashscope api key provide by alicloud."""
|
|
|
|
|
|
|
|
n: int = 1
|
|
|
|
"""How many completions to generate for each prompt."""
|
|
|
|
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
|
|
|
|
max_retries: int = 10
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
|
|
|
|
prefix_messages: List = Field(default_factory=list)
|
|
|
|
"""Series of messages for Chat input."""
|
|
|
|
|
|
|
|
result_format: str = Field(default="message")
|
|
|
|
"""Return result format"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "tongyi"
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
|
|
|
|
try:
|
|
|
|
import dashscope
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import dashscope python package. "
|
|
|
|
"Please install it with `pip install dashscope --upgrade`."
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
values["client"] = dashscope.Generation
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(
|
|
|
|
"`dashscope` has no `Generation` attribute, this is likely "
|
|
|
|
"due to an old version of the dashscope package. Try upgrading it "
|
|
|
|
"with `pip install --upgrade dashscope`."
|
|
|
|
)
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
|
|
return {
|
|
|
|
"model": self.model_name,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
"stream": self.streaming,
|
|
|
|
"n": self.n,
|
|
|
|
"result_format": self.result_format,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
def completion_with_retry(
|
|
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
|
|
) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _completion_with_retry(**_kwargs: Any) -> Any:
|
|
|
|
resp = self.client.call(**_kwargs)
|
|
|
|
if resp.status_code == 200:
|
|
|
|
return resp
|
|
|
|
elif resp.status_code in [400, 401]:
|
|
|
|
raise ValueError(
|
|
|
|
f"status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise HTTPError(
|
|
|
|
f"HTTP error occurred: status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}",
|
|
|
|
response=resp,
|
|
|
|
)
|
|
|
|
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def stream_completion_with_retry(
|
|
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
|
|
) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _stream_completion_with_retry(**_kwargs: Any) -> Any:
|
|
|
|
return self.client.call(**_kwargs)
|
|
|
|
|
|
|
|
return _stream_completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
stream: Optional[bool] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
should_stream = stream if stream is not None else self.streaming
|
|
|
|
if should_stream:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
if not messages:
|
|
|
|
raise ValueError("No messages provided.")
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
|
|
|
|
if message_dicts[-1]["role"] != "user":
|
|
|
|
raise ValueError("Last message should be user message.")
|
|
|
|
|
|
|
|
params = {**params, **kwargs}
|
|
|
|
response = self.completion_with_retry(
|
|
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
# Mark current chunk total length
|
|
|
|
length = 0
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
for chunk in self.stream_completion_with_retry(
|
|
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
|
|
):
|
|
|
|
if len(chunk["output"]["choices"]) == 0:
|
|
|
|
continue
|
|
|
|
choice = chunk["output"]["choices"][0]
|
|
|
|
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["message"], default_chunk_class, length
|
|
|
|
)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
|
|
|
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
length = len(choice["message"]["content"])
|
|
|
|
|
|
|
|
def _create_message_dicts(
|
|
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
|
|
params = self._client_params()
|
|
|
|
|
|
|
|
# Ensure `stop` is a list of strings
|
|
|
|
if stop is not None:
|
|
|
|
if "stop" in params:
|
|
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
|
|
params["stop"] = stop
|
|
|
|
|
|
|
|
message_dicts = [convert_message_to_dict(m) for m in messages]
|
|
|
|
return message_dicts, params
|
|
|
|
|
|
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the parameters used for the openai client."""
|
|
|
|
creds: Dict[str, Any] = {
|
|
|
|
"api_key": self.dashscope_api_key,
|
|
|
|
}
|
|
|
|
return {**self._default_params, **creds}
|
|
|
|
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
|
|
generations = []
|
|
|
|
for res in response["output"]["choices"]:
|
|
|
|
message = convert_dict_to_message(res["message"])
|
|
|
|
gen = ChatGeneration(
|
|
|
|
message=message,
|
|
|
|
generation_info=dict(finish_reason=res.get("finish_reason")),
|
|
|
|
)
|
|
|
|
generations.append(gen)
|
|
|
|
token_usage = response.get("usage", {})
|
|
|
|
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|