2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
import asyncio
|
|
|
|
import functools
|
2023-12-11 21:53:30 +00:00
|
|
|
import logging
|
|
|
|
from typing import (
|
|
|
|
Any,
|
2023-12-29 20:06:12 +00:00
|
|
|
AsyncIterator,
|
2023-12-11 21:53:30 +00:00
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Iterator,
|
|
|
|
List,
|
|
|
|
Mapping,
|
|
|
|
Optional,
|
2023-12-29 20:06:12 +00:00
|
|
|
Union,
|
2024-02-05 21:42:59 +00:00
|
|
|
cast,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2023-12-29 20:06:12 +00:00
|
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessage,
|
|
|
|
ChatMessageChunk,
|
|
|
|
HumanMessage,
|
|
|
|
HumanMessageChunk,
|
|
|
|
SystemMessage,
|
|
|
|
SystemMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import (
|
|
|
|
ChatGeneration,
|
|
|
|
ChatGenerationChunk,
|
|
|
|
ChatResult,
|
|
|
|
)
|
2024-01-02 23:45:23 +00:00
|
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
2023-12-11 21:53:30 +00:00
|
|
|
from requests.exceptions import HTTPError
|
|
|
|
from tenacity import (
|
2023-12-29 20:06:12 +00:00
|
|
|
before_sleep_log,
|
2023-12-11 21:53:30 +00:00
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
from langchain_community.llms.tongyi import check_response
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-19 13:58:24 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
def convert_dict_to_message(
|
|
|
|
_dict: Mapping[str, Any], is_chunk: bool = False
|
|
|
|
) -> Union[BaseMessage, BaseMessageChunk]:
|
2023-12-11 21:53:30 +00:00
|
|
|
role = _dict["role"]
|
2023-12-29 20:06:12 +00:00
|
|
|
content = _dict["content"]
|
2023-12-11 21:53:30 +00:00
|
|
|
if role == "user":
|
2023-12-29 20:06:12 +00:00
|
|
|
return (
|
|
|
|
HumanMessageChunk(content=content)
|
|
|
|
if is_chunk
|
|
|
|
else HumanMessage(content=content)
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
elif role == "assistant":
|
2023-12-29 20:06:12 +00:00
|
|
|
return (
|
|
|
|
AIMessageChunk(content=content) if is_chunk else AIMessage(content=content)
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
elif role == "system":
|
2023-12-29 20:06:12 +00:00
|
|
|
return (
|
|
|
|
SystemMessageChunk(content=content)
|
|
|
|
if is_chunk
|
|
|
|
else SystemMessage(content=content)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
return (
|
|
|
|
ChatMessageChunk(role=role, content=content)
|
|
|
|
if is_chunk
|
|
|
|
else ChatMessage(role=role, content=content)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def convert_message_chunk_to_message(message_chunk: BaseMessageChunk) -> BaseMessage:
|
|
|
|
if isinstance(message_chunk, HumanMessageChunk):
|
|
|
|
return HumanMessage(content=message_chunk.content)
|
|
|
|
elif isinstance(message_chunk, AIMessageChunk):
|
|
|
|
return AIMessage(content=message_chunk.content)
|
|
|
|
elif isinstance(message_chunk, SystemMessageChunk):
|
|
|
|
return SystemMessage(content=message_chunk.content)
|
|
|
|
elif isinstance(message_chunk, ChatMessageChunk):
|
|
|
|
return ChatMessage(role=message_chunk.role, content=message_chunk.content)
|
2023-12-11 21:53:30 +00:00
|
|
|
else:
|
2023-12-29 20:06:12 +00:00
|
|
|
raise TypeError(f"Got unknown type {message_chunk}")
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
def convert_message_to_dict(message: BaseMessage) -> dict:
|
2023-12-19 13:58:24 +00:00
|
|
|
"""Convert a message to a dict."""
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
message_dict: Dict[str, Any]
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
message_dict = {"role": "system", "content": message.content}
|
|
|
|
else:
|
|
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
def _create_retry_decorator(llm: ChatTongyi) -> Callable[[Any], Any]:
|
2023-12-11 21:53:30 +00:00
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 4
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
2023-12-29 20:06:12 +00:00
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
|
2023-12-11 21:53:30 +00:00
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(retry_if_exception_type(HTTPError)),
|
2023-12-29 20:06:12 +00:00
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ChatTongyi(BaseChatModel):
|
|
|
|
"""Alibaba Tongyi Qwen chat models API.
|
|
|
|
|
|
|
|
To use, you should have the ``dashscope`` python package installed,
|
|
|
|
and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
|
|
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import Tongyi
|
|
|
|
Tongyi_chat = ChatTongyi()
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
model_name: str = Field(default="qwen-turbo", alias="model")
|
|
|
|
|
|
|
|
"""Model name to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
|
|
top_p: float = 0.8
|
|
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
|
2024-01-02 23:45:23 +00:00
|
|
|
dashscope_api_key: Optional[SecretStr] = None
|
2023-12-29 20:06:12 +00:00
|
|
|
"""Dashscope api key provide by Alibaba Cloud."""
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
|
|
|
|
max_retries: int = 10
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "tongyi"
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
2024-01-02 23:45:23 +00:00
|
|
|
values["dashscope_api_key"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
|
2023-12-29 20:06:12 +00:00
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
try:
|
|
|
|
import dashscope
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import dashscope python package. "
|
|
|
|
"Please install it with `pip install dashscope --upgrade`."
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
values["client"] = dashscope.Generation
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(
|
|
|
|
"`dashscope` has no `Generation` attribute, this is likely "
|
|
|
|
"due to an old version of the dashscope package. Try upgrading it "
|
|
|
|
"with `pip install --upgrade dashscope`."
|
|
|
|
)
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
2023-12-29 20:06:12 +00:00
|
|
|
"""Get the default parameters for calling Tongyi Qwen API."""
|
2023-12-11 21:53:30 +00:00
|
|
|
return {
|
|
|
|
"model": self.model_name,
|
|
|
|
"top_p": self.top_p,
|
2024-02-05 21:42:59 +00:00
|
|
|
"api_key": cast(SecretStr, self.dashscope_api_key).get_secret_value(),
|
2023-12-29 20:06:12 +00:00
|
|
|
"result_format": "message",
|
2023-12-11 21:53:30 +00:00
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
def completion_with_retry(self, **kwargs: Any) -> Any:
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Use tenacity to retry the completion call."""
|
2023-12-29 20:06:12 +00:00
|
|
|
retry_decorator = _create_retry_decorator(self)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _completion_with_retry(**_kwargs: Any) -> Any:
|
|
|
|
resp = self.client.call(**_kwargs)
|
2023-12-29 20:06:12 +00:00
|
|
|
return check_response(resp)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
def stream_completion_with_retry(self, **kwargs: Any) -> Any:
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Use tenacity to retry the completion call."""
|
2023-12-29 20:06:12 +00:00
|
|
|
retry_decorator = _create_retry_decorator(self)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _stream_completion_with_retry(**_kwargs: Any) -> Any:
|
2023-12-29 20:06:12 +00:00
|
|
|
responses = self.client.call(**_kwargs)
|
|
|
|
for resp in responses:
|
|
|
|
yield check_response(resp)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
return _stream_completion_with_retry(**kwargs)
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
async def astream_completion_with_retry(self, **kwargs: Any) -> Any:
|
|
|
|
"""Because the dashscope SDK doesn't provide an async API,
|
|
|
|
we wrap `stream_generate_with_retry` with an async generator."""
|
|
|
|
|
|
|
|
class _AioTongyiGenerator:
|
|
|
|
def __init__(self, generator: Any):
|
|
|
|
self.generator = generator
|
|
|
|
|
|
|
|
def __aiter__(self) -> AsyncIterator[Any]:
|
|
|
|
return self
|
|
|
|
|
|
|
|
async def __anext__(self) -> Any:
|
|
|
|
value = await asyncio.get_running_loop().run_in_executor(
|
|
|
|
None, self._safe_next
|
|
|
|
)
|
|
|
|
if value is not None:
|
|
|
|
return value
|
|
|
|
else:
|
|
|
|
raise StopAsyncIteration
|
|
|
|
|
|
|
|
def _safe_next(self) -> Any:
|
|
|
|
try:
|
|
|
|
return next(self.generator)
|
|
|
|
except StopIteration:
|
|
|
|
return None
|
|
|
|
|
|
|
|
async for chunk in _AioTongyiGenerator(
|
|
|
|
generator=self.stream_completion_with_retry(**kwargs)
|
|
|
|
):
|
|
|
|
yield chunk
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
2023-12-29 20:06:12 +00:00
|
|
|
generations = []
|
|
|
|
if self.streaming:
|
|
|
|
generation: Optional[ChatGenerationChunk] = None
|
|
|
|
for chunk in self._stream(
|
2023-12-11 21:53:30 +00:00
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
2023-12-29 20:06:12 +00:00
|
|
|
):
|
|
|
|
if generation is None:
|
|
|
|
generation = chunk
|
|
|
|
else:
|
|
|
|
generation += chunk
|
|
|
|
assert generation is not None
|
|
|
|
generations.append(self._chunk_to_generation(generation))
|
|
|
|
else:
|
|
|
|
params: Dict[str, Any] = self._invocation_params(
|
|
|
|
messages=messages, stop=stop, **kwargs
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2023-12-29 20:06:12 +00:00
|
|
|
resp = self.completion_with_retry(**params)
|
|
|
|
generations.append(
|
|
|
|
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
|
|
|
|
)
|
|
|
|
return ChatResult(
|
|
|
|
generations=generations,
|
|
|
|
llm_output={
|
|
|
|
"model_name": self.model_name,
|
|
|
|
},
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
generations = []
|
|
|
|
if self.streaming:
|
|
|
|
generation: Optional[ChatGenerationChunk] = None
|
|
|
|
async for chunk in self._astream(
|
|
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
):
|
|
|
|
if generation is None:
|
|
|
|
generation = chunk
|
|
|
|
else:
|
|
|
|
generation += chunk
|
|
|
|
assert generation is not None
|
|
|
|
generations.append(self._chunk_to_generation(generation))
|
|
|
|
else:
|
|
|
|
params: Dict[str, Any] = self._invocation_params(
|
|
|
|
messages=messages, stop=stop, **kwargs
|
|
|
|
)
|
|
|
|
resp = await asyncio.get_running_loop().run_in_executor(
|
|
|
|
None,
|
2024-01-15 19:43:13 +00:00
|
|
|
functools.partial(self.completion_with_retry, **params),
|
2023-12-29 20:06:12 +00:00
|
|
|
)
|
|
|
|
generations.append(
|
|
|
|
ChatGeneration(**self._chat_generation_from_qwen_resp(resp))
|
|
|
|
)
|
|
|
|
return ChatResult(
|
|
|
|
generations=generations,
|
|
|
|
llm_output={
|
|
|
|
"model_name": self.model_name,
|
|
|
|
},
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
2023-12-29 20:06:12 +00:00
|
|
|
params: Dict[str, Any] = self._invocation_params(
|
|
|
|
messages=messages, stop=stop, stream=True, **kwargs
|
|
|
|
)
|
|
|
|
for stream_resp in self.stream_completion_with_retry(**params):
|
|
|
|
chunk = ChatGenerationChunk(
|
|
|
|
**self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True)
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
params: Dict[str, Any] = self._invocation_params(
|
|
|
|
messages=messages, stop=stop, stream=True, **kwargs
|
|
|
|
)
|
|
|
|
async for stream_resp in self.astream_completion_with_retry(**params):
|
|
|
|
chunk = ChatGenerationChunk(
|
|
|
|
**self._chat_generation_from_qwen_resp(stream_resp, is_chunk=True)
|
|
|
|
)
|
|
|
|
if run_manager:
|
|
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
def _invocation_params(
|
|
|
|
self, messages: List[BaseMessage], stop: Any, **kwargs: Any
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
params = {**self._default_params, **kwargs}
|
2023-12-11 21:53:30 +00:00
|
|
|
if stop is not None:
|
|
|
|
params["stop"] = stop
|
2023-12-29 20:06:12 +00:00
|
|
|
if params.get("stream"):
|
|
|
|
params["incremental_output"] = True
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
message_dicts = [convert_message_to_dict(m) for m in messages]
|
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
# According to the docs, the last message should be a `user` message
|
|
|
|
if message_dicts[-1]["role"] != "user":
|
|
|
|
raise ValueError("Last message should be user message.")
|
|
|
|
# And the `system` message should be the first message if present
|
|
|
|
system_message_indices = [
|
|
|
|
i for i, m in enumerate(message_dicts) if m["role"] == "system"
|
|
|
|
]
|
2024-01-07 16:30:18 +00:00
|
|
|
if len(system_message_indices) == 1 and system_message_indices[0] != 0:
|
2023-12-29 20:06:12 +00:00
|
|
|
raise ValueError("System message can only be the first message.")
|
2024-01-07 16:30:18 +00:00
|
|
|
elif len(system_message_indices) > 1:
|
|
|
|
raise ValueError("There can be only one system message at most.")
|
2023-12-29 20:06:12 +00:00
|
|
|
|
|
|
|
params["messages"] = message_dicts
|
|
|
|
|
|
|
|
return params
|
|
|
|
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
|
|
if llm_outputs[0] is None:
|
|
|
|
return {}
|
|
|
|
return llm_outputs[0]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _chat_generation_from_qwen_resp(
|
|
|
|
resp: Any, is_chunk: bool = False
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
choice = resp["output"]["choices"][0]
|
|
|
|
message = convert_dict_to_message(choice["message"], is_chunk=is_chunk)
|
|
|
|
return dict(
|
|
|
|
message=message,
|
|
|
|
generation_info=dict(
|
|
|
|
finish_reason=choice["finish_reason"],
|
|
|
|
request_id=resp["request_id"],
|
|
|
|
token_usage=dict(resp["usage"]),
|
|
|
|
),
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2023-12-29 20:06:12 +00:00
|
|
|
@staticmethod
|
|
|
|
def _chunk_to_generation(chunk: ChatGenerationChunk) -> ChatGeneration:
|
|
|
|
return ChatGeneration(
|
|
|
|
message=convert_message_chunk_to_message(chunk.message),
|
|
|
|
generation_info=chunk.generation_info,
|
|
|
|
)
|