langchain/libs/partners/mistralai/tests/integration_tests/test_chat_models.py

189 lines
5.9 KiB
Python
Raw Normal View History

"""Test ChatMistral chat model."""
import json
from typing import Any
from langchain_core.messages import AIMessageChunk, HumanMessage
from langchain_core.pydantic_v1 import BaseModel
from langchain_mistralai.chat_models import ChatMistralAI
def test_stream() -> None:
"""Test streaming tokens from ChatMistralAI."""
llm = ChatMistralAI()
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from ChatMistralAI."""
llm = ChatMistralAI()
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_abatch() -> None:
"""Test streaming tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatMistralAI"""
llm = ChatMistralAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_chat_mistralai_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model
def test_chat_mistralai_streaming_llm_output_contains_model_name() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert llm_result.llm_output["model_name"] == chat.model
def test_chat_mistralai_llm_output_contains_token_usage() -> None:
"""Test llm_output contains model_name."""
chat = ChatMistralAI(max_tokens=10)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert "token_usage" in llm_result.llm_output
token_usage = llm_result.llm_output["token_usage"]
assert "prompt_tokens" in token_usage
assert "completion_tokens" in token_usage
assert "total_tokens" in token_usage
def test_chat_mistralai_streaming_llm_output_not_contain_token_usage() -> None:
"""Mistral currently doesn't return token usage when streaming."""
chat = ChatMistralAI(max_tokens=10, streaming=True)
message = HumanMessage(content="Hello")
llm_result = chat.generate([[message]])
assert llm_result.llm_output is not None
assert "token_usage" in llm_result.llm_output
token_usage = llm_result.llm_output["token_usage"]
assert not token_usage
def test_structured_output() -> None:
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
schema = {
"title": "AnswerWithJustification",
"description": (
"An answer to the user question along with justification for the answer."
),
"type": "object",
"properties": {
"answer": {"title": "Answer", "type": "string"},
"justification": {"title": "Justification", "type": "string"},
},
"required": ["answer", "justification"],
}
structured_llm = llm.with_structured_output(schema)
result = structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
assert isinstance(result, dict)
def test_streaming_structured_output() -> None:
llm = ChatMistralAI(model="mistral-large", temperature=0)
class Person(BaseModel):
name: str
age: int
structured_llm = llm.with_structured_output(Person)
strm = structured_llm.stream("Erick, 27 years old")
chunk_num = 0
for chunk in strm:
assert chunk_num == 0, "should only have one chunk with model"
assert isinstance(chunk, Person)
assert chunk.name == "Erick"
assert chunk.age == 27
chunk_num += 1
def test_streaming_tool_call() -> None:
llm = ChatMistralAI(model="mistral-large", temperature=0)
class Person(BaseModel):
name: str
age: int
tool_llm = llm.bind_tools([Person])
# where it calls the tool
strm = tool_llm.stream("Erick, 27 years old")
additional_kwargs = None
for chunk in strm:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == ""
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
assert "tool_calls" in additional_kwargs
assert len(additional_kwargs["tool_calls"]) == 1
assert additional_kwargs["tool_calls"][0]["function"]["name"] == "Person"
assert json.loads(additional_kwargs["tool_calls"][0]["function"]["arguments"]) == {
"name": "Erick",
"age": 27,
}
# where it doesn't call the tool
strm = tool_llm.stream("What is 2+2?")
acc: Any = None
for chunk in strm:
assert isinstance(chunk, AIMessageChunk)
acc = chunk if acc is None else acc + chunk
assert acc.content != ""
assert "tool_calls" not in acc.additional_kwargs