langchain/docs/extras/modules/model_io/models/llms/integrations/databricks.ipynb

534 lines
15 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
Refactor and update databricks integration page (#5575) # Your PR Title (What it does) <!-- Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution. Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change. After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost. Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle! --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting <!-- If you're adding a new integration, please include: 1. a test for the integration - favor unit tests that does not rely on network access. 2. an example notebook showing its use See contribution guidelines for more information on how to write tests, lint etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> ## Who can review? Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested: <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
2023-06-08 03:45:47 +00:00
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "5147e458-3b83-449e-9c2f-e7e1972e43fc",
"showTitle": false,
"title": ""
}
},
"source": [
"# Databricks\n",
"\n",
"The [Databricks](https://www.databricks.com/) Lakehouse Platform unifies data, analytics, and AI on one platform.\n",
"\n",
"This example notebook shows how to wrap Databricks endpoints as LLMs in LangChain.\n",
"It supports two endpoint types:\n",
"* Serving endpoint, recommended for production and development,\n",
"* Cluster driver proxy app, recommended for iteractive development."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "bf07455f-aac9-4873-a8e7-7952af0f8c82",
"showTitle": false,
"title": ""
}
},
"outputs": [],
"source": [
"from langchain.llms import Databricks"
]
},
{
Refactor and update databricks integration page (#5575) # Your PR Title (What it does) <!-- Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution. Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change. After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost. Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle! --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting <!-- If you're adding a new integration, please include: 1. a test for the integration - favor unit tests that does not rely on network access. 2. an example notebook showing its use See contribution guidelines for more information on how to write tests, lint etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> ## Who can review? Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested: <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
2023-06-08 03:45:47 +00:00
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "94f6540e-40cd-4d9b-95d3-33d36f061dcc",
"showTitle": false,
"title": ""
}
},
"source": [
"## Wrapping a serving endpoint\n",
"\n",
"Prerequisites:\n",
"* An LLM was registered and deployed to [a Databricks serving endpoint](https://docs.databricks.com/machine-learning/model-serving/index.html).\n",
"* You have [\"Can Query\" permission](https://docs.databricks.com/security/auth-authz/access-control/serving-endpoint-acl.html) to the endpoint.\n",
"\n",
"The expected MLflow model signature is:\n",
" * inputs: `[{\"name\": \"prompt\", \"type\": \"string\"}, {\"name\": \"stop\", \"type\": \"list[string]\"}]`\n",
" * outputs: `[{\"type\": \"string\"}]`\n",
"\n",
"If the model signature is incompatible or you want to insert extra configs, you can set `transform_input_fn` and `transform_output_fn` accordingly."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "7496dc7a-8a1a-4ce6-9648-4f69ed25275b",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am happy to hear that you are in good health and as always, you are appreciated.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If running a Databricks notebook attached to an interactive cluster in \"single user\"\n",
"# or \"no isolation shared\" mode, you only need to specify the endpoint name to create\n",
"# a `Databricks` instance to query a serving endpoint in the same workspace.\n",
"llm = Databricks(endpoint_name=\"dolly\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "0c86d952-4236-4a5e-bdac-cf4e3ccf3a16",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Good'"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm(\"How are you?\", stop=[\".\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "5f2507a2-addd-431d-9da5-dc2ae33783f6",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am fine. Thank you!'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Otherwise, you can manually specify the Databricks workspace hostname and personal access token\n",
"# or set `DATABRICKS_HOST` and `DATABRICKS_TOKEN` environment variables, respectively.\n",
"# See https://docs.databricks.com/dev-tools/auth.html#databricks-personal-access-tokens\n",
"# We strongly recommend not exposing the API token explicitly inside a notebook.\n",
"# You can use Databricks secret manager to store your API token securely.\n",
"# See https://docs.databricks.com/dev-tools/databricks-utils.html#secrets-utility-dbutilssecrets\n",
"\n",
"import os\n",
"\n",
"os.environ[\"DATABRICKS_TOKEN\"] = dbutils.secrets.get(\"myworkspace\", \"api_token\")\n",
"\n",
"llm = Databricks(host=\"myworkspace.cloud.databricks.com\", endpoint_name=\"dolly\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "9b54f8ce-ffe5-4c47-a3f0-b4ebde524a6a",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am fine.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If the serving endpoint accepts extra parameters like `temperature`,\n",
"# you can set them in `model_kwargs`.\n",
"llm = Databricks(endpoint_name=\"dolly\", model_kwargs={\"temperature\": 0.1})\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "50f172f5-ea1f-4ceb-8cf1-20289848de7b",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Im Excellent. You?'"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use `transform_input_fn` and `transform_output_fn` if the serving endpoint\n",
"# expects a different input schema and does not return a JSON string,\n",
"# respectively, or you want to apply a prompt template on top.\n",
"\n",
"\n",
"def transform_input(**request):\n",
" full_prompt = f\"\"\"{request[\"prompt\"]}\n",
" Be Concise.\n",
" \"\"\"\n",
" request[\"prompt\"] = full_prompt\n",
" return request\n",
"\n",
"\n",
"llm = Databricks(endpoint_name=\"dolly\", transform_input_fn=transform_input)\n",
"\n",
"llm(\"How are you?\")"
]
},
{
Refactor and update databricks integration page (#5575) # Your PR Title (What it does) <!-- Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution. Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change. After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost. Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle! --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting <!-- If you're adding a new integration, please include: 1. a test for the integration - favor unit tests that does not rely on network access. 2. an example notebook showing its use See contribution guidelines for more information on how to write tests, lint etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> ## Who can review? Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested: <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
2023-06-08 03:45:47 +00:00
"attachments": {},
"cell_type": "markdown",
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {},
"inputWidgets": {},
"nuid": "8ea49319-a041-494d-afcd-87bcf00d5efb",
"showTitle": false,
"title": ""
}
},
"source": [
"## Wrapping a cluster driver proxy app\n",
"\n",
"Prerequisites:\n",
"* An LLM loaded on a Databricks interactive cluster in \"single user\" or \"no isolation shared\" mode.\n",
"* A local HTTP server running on the driver node to serve the model at `\"/\"` using HTTP POST with JSON input/output.\n",
Refactor and update databricks integration page (#5575) # Your PR Title (What it does) <!-- Thank you for contributing to LangChain! Your PR will appear in our release under the title you set. Please make sure it highlights your valuable contribution. Replace this with a description of the change, the issue it fixes (if applicable), and relevant context. List any dependencies required for this change. After you're done, someone will review your PR. They may suggest improvements. If no one reviews your PR within a few days, feel free to @-mention the same people again, as notifications can get lost. Finally, we'd love to show appreciation for your contribution - if you'd like us to shout you out on Twitter, please also include your handle! --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting <!-- If you're adding a new integration, please include: 1. a test for the integration - favor unit tests that does not rely on network access. 2. an example notebook showing its use See contribution guidelines for more information on how to write tests, lint etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> ## Who can review? Community members can review the PR once tests pass. Tag maintainers/contributors who might be interested: <!-- For a quicker response, figure out the right person to tag with @ @hwchase17 - project lead Tracing / Callbacks - @agola11 Async - @agola11 DataLoaders - @eyurtsev Models - @hwchase17 - @agola11 Agents / Tools / Toolkits - @vowelparrot VectorStores / Retrievers / Memory - @dev2049 -->
2023-06-08 03:45:47 +00:00
"* It uses a port number between `[3000, 8000]` and listens to the driver IP address or simply `0.0.0.0` instead of localhost only.\n",
"* You have \"Can Attach To\" permission to the cluster.\n",
"\n",
"The expected server schema (using JSON schema) is:\n",
"* inputs:\n",
" ```json\n",
" {\"type\": \"object\",\n",
" \"properties\": {\n",
" \"prompt\": {\"type\": \"string\"},\n",
" \"stop\": {\"type\": \"array\", \"items\": {\"type\": \"string\"}}},\n",
" \"required\": [\"prompt\"]}\n",
" ```\n",
"* outputs: `{\"type\": \"string\"}`\n",
"\n",
"If the server schema is incompatible or you want to insert extra configs, you can use `transform_input_fn` and `transform_output_fn` accordingly.\n",
"\n",
"The following is a minimal example for running a driver proxy app to serve an LLM:\n",
"\n",
"```python\n",
"from flask import Flask, request, jsonify\n",
"import torch\n",
"from transformers import pipeline, AutoTokenizer, StoppingCriteria\n",
"\n",
"model = \"databricks/dolly-v2-3b\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model, padding_side=\"left\")\n",
"dolly = pipeline(model=model, tokenizer=tokenizer, trust_remote_code=True, device_map=\"auto\")\n",
"device = dolly.device\n",
"\n",
"class CheckStop(StoppingCriteria):\n",
" def __init__(self, stop=None):\n",
" super().__init__()\n",
" self.stop = stop or []\n",
" self.matched = \"\"\n",
" self.stop_ids = [tokenizer.encode(s, return_tensors='pt').to(device) for s in self.stop]\n",
" def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):\n",
" for i, s in enumerate(self.stop_ids):\n",
" if torch.all((s == input_ids[0][-s.shape[1]:])).item():\n",
" self.matched = self.stop[i]\n",
" return True\n",
" return False\n",
"\n",
"def llm(prompt, stop=None, **kwargs):\n",
" check_stop = CheckStop(stop)\n",
" result = dolly(prompt, stopping_criteria=[check_stop], **kwargs)\n",
" return result[0][\"generated_text\"].rstrip(check_stop.matched)\n",
"\n",
"app = Flask(\"dolly\")\n",
"\n",
"@app.route('/', methods=['POST'])\n",
"def serve_llm():\n",
" resp = llm(**request.json)\n",
" return jsonify(resp)\n",
"\n",
"app.run(host=\"0.0.0.0\", port=\"7777\")\n",
"```\n",
"\n",
"Once the server is running, you can create a `Databricks` instance to wrap it as an LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "e3330a01-e738-4170-a176-9954aff56442",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Hello, thank you for asking. It is wonderful to hear that you are well.'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If running a Databricks notebook attached to the same cluster that runs the app,\n",
"# you only need to specify the driver port to create a `Databricks` instance.\n",
"llm = Databricks(cluster_driver_port=\"7777\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "39c121cf-0e44-4e31-91db-37fcac459677",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am well. You?'"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Otherwise, you can manually specify the cluster ID to use,\n",
"# as well as Databricks workspace hostname and personal access token.\n",
"\n",
"llm = Databricks(cluster_id=\"0000-000000-xxxxxxxx\", cluster_driver_port=\"7777\")\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "3d3de599-82fd-45e4-8d8b-bacfc49dc9ce",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I am very well. It is a pleasure to meet you.'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# If the app accepts extra parameters like `temperature`,\n",
"# you can set them in `model_kwargs`.\n",
"llm = Databricks(cluster_driver_port=\"7777\", model_kwargs={\"temperature\": 0.1})\n",
"\n",
"llm(\"How are you?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"application/vnd.databricks.v1+cell": {
"cellMetadata": {
"byteLimit": 2048000,
"rowLimit": 10000
},
"inputWidgets": {},
"nuid": "853fae8e-8df4-41e6-9d45-7769f883fe80",
"showTitle": false,
"title": ""
}
},
"outputs": [
{
"data": {
"text/plain": [
"'I AM DOING GREAT THANK YOU.'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Use `transform_input_fn` and `transform_output_fn` if the app\n",
"# expects a different input schema and does not return a JSON string,\n",
"# respectively, or you want to apply a prompt template on top.\n",
"\n",
"\n",
"def transform_input(**request):\n",
" full_prompt = f\"\"\"{request[\"prompt\"]}\n",
" Be Concise.\n",
" \"\"\"\n",
" request[\"prompt\"] = full_prompt\n",
" return request\n",
"\n",
"\n",
"def transform_output(response):\n",
" return response.upper()\n",
"\n",
"\n",
"llm = Databricks(\n",
" cluster_driver_port=\"7777\",\n",
" transform_input_fn=transform_input,\n",
" transform_output_fn=transform_output,\n",
")\n",
"\n",
"llm(\"How are you?\")"
]
}
],
"metadata": {
"application/vnd.databricks.v1+notebook": {
"dashboards": [],
"language": "python",
"notebookMetadata": {
"pythonIndentUnit": 2
},
"notebookName": "databricks",
"widgets": {}
},
"kernelspec": {
"display_name": "llm",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 0
}