mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
210 lines
4.9 KiB
Plaintext
210 lines
4.9 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "91871002",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Structured Output Parser\n",
|
||
|
"\n",
|
||
|
"While the Pydantic/JSON parser is more powerful, we initially experimented data structures having text fields only."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "b492997a",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.output_parsers import StructuredOutputParser, ResponseSchema\n",
|
||
|
"from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
|
||
|
"from langchain.llms import OpenAI\n",
|
||
|
"from langchain.chat_models import ChatOpenAI"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "09473dce",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Here we define the response schema we want to receive."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "432ac44a",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"response_schemas = [\n",
|
||
|
" ResponseSchema(name=\"answer\", description=\"answer to the user's question\"),\n",
|
||
|
" ResponseSchema(name=\"source\", description=\"source used to answer the user's question, should be a website.\")\n",
|
||
|
"]\n",
|
||
|
"output_parser = StructuredOutputParser.from_response_schemas(response_schemas)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "7b92ce96",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"We now get a string that contains instructions for how the response should be formatted, and we then insert that into our prompt."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "593cfc25",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"format_instructions = output_parser.get_format_instructions()\n",
|
||
|
"prompt = PromptTemplate(\n",
|
||
|
" template=\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\",\n",
|
||
|
" input_variables=[\"question\"],\n",
|
||
|
" partial_variables={\"format_instructions\": format_instructions}\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "0943e783",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"We can now use this to format a prompt to send to the language model, and then parse the returned result."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "106f1ba6",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"model = OpenAI(temperature=0)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"id": "86d9d24f",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"_input = prompt.format_prompt(question=\"what's the capital of france\")\n",
|
||
|
"output = model(_input.to_string())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"id": "956bdc99",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 8,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"output_parser.parse(output)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "da639285",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"And here's an example of using this in a chat model"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"id": "8f483d7d",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"chat_model = ChatOpenAI(temperature=0)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"id": "f761cbf1",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"prompt = ChatPromptTemplate(\n",
|
||
|
" messages=[\n",
|
||
|
" HumanMessagePromptTemplate.from_template(\"answer the users question as best as possible.\\n{format_instructions}\\n{question}\") \n",
|
||
|
" ],\n",
|
||
|
" input_variables=[\"question\"],\n",
|
||
|
" partial_variables={\"format_instructions\": format_instructions}\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"id": "edd73ae3",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"_input = prompt.format_prompt(question=\"what's the capital of france\")\n",
|
||
|
"output = chat_model(_input.to_messages())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"id": "a3c8b91e",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"{'answer': 'Paris', 'source': 'https://en.wikipedia.org/wiki/Paris'}"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"output_parser.parse(output.content)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|