2023-06-11 20:35:14 +00:00
|
|
|
"""Test embaas embeddings."""
|
|
|
|
import responses
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings.embaas import EMBAAS_API_URL, EmbaasEmbeddings
|
2023-06-11 20:35:14 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_embaas_embed_documents() -> None:
|
|
|
|
"""Test embaas embeddings with multiple texts."""
|
|
|
|
texts = ["foo bar", "bar foo", "foo"]
|
|
|
|
embedding = EmbaasEmbeddings()
|
|
|
|
output = embedding.embed_documents(texts)
|
|
|
|
assert len(output) == 3
|
|
|
|
assert len(output[0]) == 1024
|
|
|
|
assert len(output[1]) == 1024
|
|
|
|
assert len(output[2]) == 1024
|
|
|
|
|
|
|
|
|
|
|
|
def test_embaas_embed_query() -> None:
|
|
|
|
"""Test embaas embeddings with multiple texts."""
|
|
|
|
text = "foo"
|
|
|
|
embeddings = EmbaasEmbeddings()
|
|
|
|
output = embeddings.embed_query(text)
|
|
|
|
assert len(output) == 1024
|
|
|
|
|
|
|
|
|
|
|
|
def test_embaas_embed_query_instruction() -> None:
|
|
|
|
"""Test embaas embeddings with a different instruction."""
|
|
|
|
text = "Test"
|
|
|
|
instruction = "query"
|
|
|
|
embeddings = EmbaasEmbeddings(instruction=instruction)
|
|
|
|
output = embeddings.embed_query(text)
|
|
|
|
assert len(output) == 1024
|
|
|
|
|
|
|
|
|
|
|
|
def test_embaas_embed_query_model() -> None:
|
|
|
|
"""Test embaas embeddings with a different model."""
|
|
|
|
text = "Test"
|
|
|
|
model = "instructor-large"
|
|
|
|
instruction = "Represent the query for retrieval"
|
|
|
|
embeddings = EmbaasEmbeddings(model=model, instruction=instruction)
|
|
|
|
output = embeddings.embed_query(text)
|
|
|
|
assert len(output) == 768
|
|
|
|
|
|
|
|
|
|
|
|
@responses.activate
|
|
|
|
def test_embaas_embed_documents_response() -> None:
|
|
|
|
"""Test embaas embeddings with multiple texts."""
|
|
|
|
responses.add(
|
|
|
|
responses.POST,
|
|
|
|
EMBAAS_API_URL,
|
|
|
|
json={"data": [{"embedding": [0.0] * 1024}]},
|
|
|
|
status=200,
|
|
|
|
)
|
|
|
|
|
|
|
|
text = "asd"
|
|
|
|
embeddings = EmbaasEmbeddings()
|
|
|
|
output = embeddings.embed_query(text)
|
|
|
|
assert len(output) == 1024
|