mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
72 lines
2.0 KiB
Python
72 lines
2.0 KiB
Python
|
""" This file is for LLMRails Embedding """
|
||
|
import logging
|
||
|
import os
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra
|
||
|
|
||
|
|
||
|
class LLMRailsEmbeddings(BaseModel, Embeddings):
|
||
|
"""LLMRails embedding models.
|
||
|
|
||
|
To use, you should have the environment
|
||
|
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it
|
||
|
as a named parameter to the constructor.
|
||
|
|
||
|
Model can be one of ["embedding-english-v1","embedding-multi-v1"]
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import LLMRailsEmbeddings
|
||
|
cohere = LLMRailsEmbeddings(
|
||
|
model="embedding-english-v1", api_key="my-api-key"
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
model: str = "embedding-english-v1"
|
||
|
"""Model name to use."""
|
||
|
|
||
|
api_key: Optional[str] = None
|
||
|
"""LLMRails API key."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Call out to Cohere's embedding endpoint.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
api_key = self.api_key or os.environ.get("LLM_RAILS_API_KEY")
|
||
|
if api_key is None:
|
||
|
logging.warning("Can't find LLMRails credentials in environment.")
|
||
|
raise ValueError("LLM_RAILS_API_KEY is not set")
|
||
|
|
||
|
response = requests.post(
|
||
|
"https://api.llmrails.com/v1/embeddings",
|
||
|
headers={"X-API-KEY": api_key},
|
||
|
json={"input": texts, "model": self.model},
|
||
|
timeout=60,
|
||
|
)
|
||
|
return [item["embedding"] for item in response.json()["data"]]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Call out to Cohere's embedding endpoint.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
return self.embed_documents([text])[0]
|