langchain/libs/community/langchain_community/embeddings/llm_rails.py

72 lines
2.0 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
""" This file is for LLMRails Embedding """
import logging
import os
from typing import List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
class LLMRailsEmbeddings(BaseModel, Embeddings):
"""LLMRails embedding models.
To use, you should have the environment
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Model can be one of ["embedding-english-v1","embedding-multi-v1"]
Example:
.. code-block:: python
from langchain_community.embeddings import LLMRailsEmbeddings
cohere = LLMRailsEmbeddings(
model="embedding-english-v1", api_key="my-api-key"
)
"""
model: str = "embedding-english-v1"
"""Model name to use."""
api_key: Optional[str] = None
"""LLMRails API key."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to Cohere's embedding endpoint.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
api_key = self.api_key or os.environ.get("LLM_RAILS_API_KEY")
if api_key is None:
logging.warning("Can't find LLMRails credentials in environment.")
raise ValueError("LLM_RAILS_API_KEY is not set")
response = requests.post(
"https://api.llmrails.com/v1/embeddings",
headers={"X-API-KEY": api_key},
json={"input": texts, "model": self.model},
timeout=60,
)
return [item["embedding"] for item in response.json()["data"]]
def embed_query(self, text: str) -> List[float]:
"""Call out to Cohere's embedding endpoint.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]