2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import contextlib
|
|
|
|
import enum
|
|
|
|
import logging
|
|
|
|
import uuid
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Generator,
|
|
|
|
Iterable,
|
|
|
|
List,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
)
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import sqlalchemy
|
|
|
|
from sqlalchemy import delete
|
|
|
|
from sqlalchemy.dialects.postgresql import JSON, UUID
|
|
|
|
from sqlalchemy.orm import Session, relationship
|
|
|
|
|
|
|
|
try:
|
|
|
|
from sqlalchemy.orm import declarative_base
|
|
|
|
except ImportError:
|
|
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
2023-12-29 20:34:03 +00:00
|
|
|
from langchain_core.runnables.config import run_in_executor
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
|
|
|
|
|
|
|
|
class DistanceStrategy(str, enum.Enum):
|
|
|
|
"""Enumerator of the Distance strategies."""
|
|
|
|
|
|
|
|
EUCLIDEAN = "l2"
|
|
|
|
COSINE = "cosine"
|
|
|
|
MAX_INNER_PRODUCT = "inner"
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
|
|
|
|
|
|
|
Base = declarative_base() # type: Any
|
|
|
|
|
|
|
|
|
|
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModel(Base):
|
|
|
|
"""Base model for the SQL stores."""
|
|
|
|
|
|
|
|
__abstract__ = True
|
|
|
|
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
|
|
|
|
|
|
|
|
2023-12-14 21:27:30 +00:00
|
|
|
_classes: Any = None
|
|
|
|
|
|
|
|
|
2024-01-22 22:32:44 +00:00
|
|
|
def _get_embedding_collection_store(vector_dimension: Optional[int] = None) -> Any:
|
2023-12-14 21:27:30 +00:00
|
|
|
global _classes
|
|
|
|
if _classes is not None:
|
|
|
|
return _classes
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from pgvector.sqlalchemy import Vector
|
|
|
|
|
|
|
|
class CollectionStore(BaseModel):
|
|
|
|
"""Collection store."""
|
|
|
|
|
|
|
|
__tablename__ = "langchain_pg_collection"
|
|
|
|
|
|
|
|
name = sqlalchemy.Column(sqlalchemy.String)
|
|
|
|
cmetadata = sqlalchemy.Column(JSON)
|
|
|
|
|
|
|
|
embeddings = relationship(
|
|
|
|
"EmbeddingStore",
|
|
|
|
back_populates="collection",
|
|
|
|
passive_deletes=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_by_name(
|
|
|
|
cls, session: Session, name: str
|
|
|
|
) -> Optional["CollectionStore"]:
|
|
|
|
return session.query(cls).filter(cls.name == name).first() # type: ignore
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_or_create(
|
|
|
|
cls,
|
|
|
|
session: Session,
|
|
|
|
name: str,
|
|
|
|
cmetadata: Optional[dict] = None,
|
|
|
|
) -> Tuple["CollectionStore", bool]:
|
|
|
|
"""
|
|
|
|
Get or create a collection.
|
|
|
|
Returns [Collection, bool] where the bool is True if the collection was created.
|
|
|
|
""" # noqa: E501
|
|
|
|
created = False
|
|
|
|
collection = cls.get_by_name(session, name)
|
|
|
|
if collection:
|
|
|
|
return collection, created
|
|
|
|
|
|
|
|
collection = cls(name=name, cmetadata=cmetadata)
|
|
|
|
session.add(collection)
|
|
|
|
session.commit()
|
|
|
|
created = True
|
|
|
|
return collection, created
|
|
|
|
|
|
|
|
class EmbeddingStore(BaseModel):
|
|
|
|
"""Embedding store."""
|
|
|
|
|
|
|
|
__tablename__ = "langchain_pg_embedding"
|
|
|
|
|
|
|
|
collection_id = sqlalchemy.Column(
|
|
|
|
UUID(as_uuid=True),
|
|
|
|
sqlalchemy.ForeignKey(
|
|
|
|
f"{CollectionStore.__tablename__}.uuid",
|
|
|
|
ondelete="CASCADE",
|
|
|
|
),
|
|
|
|
)
|
|
|
|
collection = relationship(CollectionStore, back_populates="embeddings")
|
|
|
|
|
2024-01-22 22:32:44 +00:00
|
|
|
embedding: Vector = sqlalchemy.Column(Vector(vector_dimension))
|
2023-12-11 21:53:30 +00:00
|
|
|
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
|
|
cmetadata = sqlalchemy.Column(JSON, nullable=True)
|
|
|
|
|
|
|
|
# custom_id : any user defined id
|
|
|
|
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
|
|
|
2023-12-14 21:27:30 +00:00
|
|
|
_classes = (EmbeddingStore, CollectionStore)
|
|
|
|
|
|
|
|
return _classes
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
|
|
|
"""Return docs from docs and scores."""
|
|
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
|
|
|
|
|
|
|
|
class PGVector(VectorStore):
|
|
|
|
"""`Postgres`/`PGVector` vector store.
|
|
|
|
|
|
|
|
To use, you should have the ``pgvector`` python package installed.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
connection_string: Postgres connection string.
|
|
|
|
embedding_function: Any embedding function implementing
|
|
|
|
`langchain.embeddings.base.Embeddings` interface.
|
2024-01-22 22:32:44 +00:00
|
|
|
embedding_length: The length of the embedding vector. (default: None)
|
|
|
|
NOTE: This is not mandatory. Defining it will prevent vectors of
|
|
|
|
any other size to be added to the embeddings table but, without it,
|
|
|
|
the embeddings can't be indexed.
|
2023-12-11 21:53:30 +00:00
|
|
|
collection_name: The name of the collection to use. (default: langchain)
|
|
|
|
NOTE: This is not the name of the table, but the name of the collection.
|
|
|
|
The tables will be created when initializing the store (if not exists)
|
|
|
|
So, make sure the user has the right permissions to create tables.
|
|
|
|
distance_strategy: The distance strategy to use. (default: COSINE)
|
|
|
|
pre_delete_collection: If True, will delete the collection if it exists.
|
|
|
|
(default: False). Useful for testing.
|
|
|
|
engine_args: SQLAlchemy's create engine arguments.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.vectorstores import PGVector
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
|
|
|
|
|
|
CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3"
|
|
|
|
COLLECTION_NAME = "state_of_the_union_test"
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
vectorestore = PGVector.from_documents(
|
|
|
|
embedding=embeddings,
|
|
|
|
documents=docs,
|
|
|
|
collection_name=COLLECTION_NAME,
|
|
|
|
connection_string=CONNECTION_STRING,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
connection_string: str,
|
|
|
|
embedding_function: Embeddings,
|
2024-01-22 22:32:44 +00:00
|
|
|
embedding_length: Optional[int] = None,
|
2023-12-11 21:53:30 +00:00
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
collection_metadata: Optional[dict] = None,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
logger: Optional[logging.Logger] = None,
|
|
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
|
|
*,
|
|
|
|
connection: Optional[sqlalchemy.engine.Connection] = None,
|
|
|
|
engine_args: Optional[dict[str, Any]] = None,
|
|
|
|
) -> None:
|
|
|
|
self.connection_string = connection_string
|
|
|
|
self.embedding_function = embedding_function
|
2024-01-22 22:32:44 +00:00
|
|
|
self._embedding_length = embedding_length
|
2023-12-11 21:53:30 +00:00
|
|
|
self.collection_name = collection_name
|
|
|
|
self.collection_metadata = collection_metadata
|
|
|
|
self._distance_strategy = distance_strategy
|
|
|
|
self.pre_delete_collection = pre_delete_collection
|
|
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
|
|
self.engine_args = engine_args or {}
|
2023-12-28 23:07:16 +00:00
|
|
|
self._bind = connection if connection else self._create_engine()
|
2023-12-11 21:53:30 +00:00
|
|
|
self.__post_init__()
|
|
|
|
|
|
|
|
def __post_init__(
|
|
|
|
self,
|
|
|
|
) -> None:
|
|
|
|
"""Initialize the store."""
|
|
|
|
self.create_vector_extension()
|
|
|
|
|
2024-01-22 22:32:44 +00:00
|
|
|
EmbeddingStore, CollectionStore = _get_embedding_collection_store(
|
|
|
|
self._embedding_length
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
self.CollectionStore = CollectionStore
|
|
|
|
self.EmbeddingStore = EmbeddingStore
|
|
|
|
self.create_tables_if_not_exists()
|
|
|
|
self.create_collection()
|
|
|
|
|
|
|
|
def __del__(self) -> None:
|
2023-12-28 23:07:16 +00:00
|
|
|
if isinstance(self._bind, sqlalchemy.engine.Connection):
|
|
|
|
self._bind.close()
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def embeddings(self) -> Embeddings:
|
|
|
|
return self.embedding_function
|
|
|
|
|
2023-12-28 23:07:16 +00:00
|
|
|
def _create_engine(self) -> sqlalchemy.engine.Engine:
|
|
|
|
return sqlalchemy.create_engine(url=self.connection_string, **self.engine_args)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def create_vector_extension(self) -> None:
|
|
|
|
try:
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
# The advisor lock fixes issue arising from concurrent
|
|
|
|
# creation of the vector extension.
|
|
|
|
# https://github.com/langchain-ai/langchain/issues/12933
|
|
|
|
# For more information see:
|
|
|
|
# https://www.postgresql.org/docs/16/explicit-locking.html#ADVISORY-LOCKS
|
|
|
|
statement = sqlalchemy.text(
|
|
|
|
"BEGIN;"
|
|
|
|
"SELECT pg_advisory_xact_lock(1573678846307946496);"
|
|
|
|
"CREATE EXTENSION IF NOT EXISTS vector;"
|
|
|
|
"COMMIT;"
|
|
|
|
)
|
|
|
|
session.execute(statement)
|
|
|
|
session.commit()
|
|
|
|
except Exception as e:
|
|
|
|
raise Exception(f"Failed to create vector extension: {e}") from e
|
|
|
|
|
|
|
|
def create_tables_if_not_exists(self) -> None:
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session, session.begin(): # type: ignore[arg-type]
|
2023-12-28 23:07:16 +00:00
|
|
|
Base.metadata.create_all(session.get_bind())
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def drop_tables(self) -> None:
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session, session.begin(): # type: ignore[arg-type]
|
2023-12-28 23:07:16 +00:00
|
|
|
Base.metadata.drop_all(session.get_bind())
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def create_collection(self) -> None:
|
|
|
|
if self.pre_delete_collection:
|
|
|
|
self.delete_collection()
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
self.CollectionStore.get_or_create(
|
|
|
|
session, self.collection_name, cmetadata=self.collection_metadata
|
|
|
|
)
|
|
|
|
|
|
|
|
def delete_collection(self) -> None:
|
|
|
|
self.logger.debug("Trying to delete collection")
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
self.logger.warning("Collection not found")
|
|
|
|
return
|
|
|
|
session.delete(collection)
|
|
|
|
session.commit()
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def _make_session(self) -> Generator[Session, None, None]:
|
|
|
|
"""Create a context manager for the session, bind to _conn string."""
|
2024-02-05 19:22:06 +00:00
|
|
|
yield Session(self._bind) # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def delete(
|
|
|
|
self,
|
|
|
|
ids: Optional[List[str]] = None,
|
2024-01-07 16:33:21 +00:00
|
|
|
collection_only: bool = False,
|
2023-12-11 21:53:30 +00:00
|
|
|
**kwargs: Any,
|
|
|
|
) -> None:
|
|
|
|
"""Delete vectors by ids or uuids.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ids: List of ids to delete.
|
2024-01-07 16:33:21 +00:00
|
|
|
collection_only: Only delete ids in the collection.
|
2023-12-11 21:53:30 +00:00
|
|
|
"""
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
if ids is not None:
|
|
|
|
self.logger.debug(
|
|
|
|
"Trying to delete vectors by ids (represented by the model "
|
|
|
|
"using the custom ids field)"
|
|
|
|
)
|
2024-01-07 16:33:21 +00:00
|
|
|
|
|
|
|
stmt = delete(self.EmbeddingStore)
|
|
|
|
|
|
|
|
if collection_only:
|
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
self.logger.warning("Collection not found")
|
|
|
|
return
|
|
|
|
|
|
|
|
stmt = stmt.where(
|
|
|
|
self.EmbeddingStore.collection_id == collection.uuid
|
|
|
|
)
|
|
|
|
|
|
|
|
stmt = stmt.where(self.EmbeddingStore.custom_id.in_(ids))
|
2023-12-11 21:53:30 +00:00
|
|
|
session.execute(stmt)
|
|
|
|
session.commit()
|
|
|
|
|
|
|
|
def get_collection(self, session: Session) -> Any:
|
|
|
|
return self.CollectionStore.get_by_name(session, self.collection_name)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def __from(
|
|
|
|
cls,
|
|
|
|
texts: List[str],
|
|
|
|
embeddings: List[List[float]],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
connection_string: Optional[str] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVector:
|
|
|
|
if ids is None:
|
|
|
|
ids = [str(uuid.uuid1()) for _ in texts]
|
|
|
|
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
if connection_string is None:
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
store = cls(
|
|
|
|
connection_string=connection_string,
|
|
|
|
collection_name=collection_name,
|
|
|
|
embedding_function=embedding,
|
|
|
|
distance_strategy=distance_strategy,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
store.add_embeddings(
|
|
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
return store
|
|
|
|
|
|
|
|
def add_embeddings(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
embeddings: List[List[float]],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Add embeddings to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
embeddings: List of list of embedding vectors.
|
|
|
|
metadatas: List of metadatas associated with the texts.
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
"""
|
|
|
|
if ids is None:
|
|
|
|
ids = [str(uuid.uuid1()) for _ in texts]
|
|
|
|
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
raise ValueError("Collection not found")
|
community[patch]: Use SQLAlchemy's `bulk_save_objects` method to improve insert performance (#16244)
- **Description:** Improve [pgvector vector store
adapter](https://github.com/langchain-ai/langchain/blob/v0.1.1/libs/community/langchain_community/vectorstores/pgvector.py)
to save embeddings in batches, to improve its performance.
- **Issue:** NA
- **Dependencies:** NA
- **References:** https://github.com/crate-workbench/langchain/pull/1
Hi again from the CrateDB team,
following up on GH-16243, this is another minor patch to the pgvector
vector store adapter. Inserting embeddings in batches, using
[SQLAlchemy's
`bulk_save_objects`](https://docs.sqlalchemy.org/en/20/orm/session_api.html#sqlalchemy.orm.Session.bulk_save_objects)
method, can deliver substantial performance gains.
With kind regards,
Andreas.
NB: As I am seeing just now that this method is a legacy feature of SA
2.0, it will need to be reworked on a future iteration. However, it is
not deprecated yet, and I haven't been able to come up with a different
implementation, yet.
2024-01-19 02:35:39 +00:00
|
|
|
documents = []
|
2023-12-11 21:53:30 +00:00
|
|
|
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
|
|
|
embedding_store = self.EmbeddingStore(
|
|
|
|
embedding=embedding,
|
|
|
|
document=text,
|
|
|
|
cmetadata=metadata,
|
|
|
|
custom_id=id,
|
|
|
|
collection_id=collection.uuid,
|
|
|
|
)
|
community[patch]: Use SQLAlchemy's `bulk_save_objects` method to improve insert performance (#16244)
- **Description:** Improve [pgvector vector store
adapter](https://github.com/langchain-ai/langchain/blob/v0.1.1/libs/community/langchain_community/vectorstores/pgvector.py)
to save embeddings in batches, to improve its performance.
- **Issue:** NA
- **Dependencies:** NA
- **References:** https://github.com/crate-workbench/langchain/pull/1
Hi again from the CrateDB team,
following up on GH-16243, this is another minor patch to the pgvector
vector store adapter. Inserting embeddings in batches, using
[SQLAlchemy's
`bulk_save_objects`](https://docs.sqlalchemy.org/en/20/orm/session_api.html#sqlalchemy.orm.Session.bulk_save_objects)
method, can deliver substantial performance gains.
With kind regards,
Andreas.
NB: As I am seeing just now that this method is a legacy feature of SA
2.0, it will need to be reworked on a future iteration. However, it is
not deprecated yet, and I haven't been able to come up with a different
implementation, yet.
2024-01-19 02:35:39 +00:00
|
|
|
documents.append(embedding_store)
|
|
|
|
session.bulk_save_objects(documents)
|
2023-12-11 21:53:30 +00:00
|
|
|
session.commit()
|
|
|
|
|
|
|
|
return ids
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
|
|
return self.add_embeddings(
|
|
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Run similarity search with PGVector with distance.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): Query text to search for.
|
|
|
|
k (int): Number of results to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query.
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(text=query)
|
|
|
|
return self.similarity_search_by_vector(
|
|
|
|
embedding=embedding,
|
|
|
|
k=k,
|
|
|
|
filter=filter,
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs most similar to query.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query: Text to look up documents similar to.
|
|
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query and score for each.
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(query)
|
|
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return docs
|
|
|
|
|
|
|
|
@property
|
|
|
|
def distance_strategy(self) -> Any:
|
|
|
|
if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
|
|
return self.EmbeddingStore.embedding.l2_distance
|
|
|
|
elif self._distance_strategy == DistanceStrategy.COSINE:
|
|
|
|
return self.EmbeddingStore.embedding.cosine_distance
|
|
|
|
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
|
|
|
return self.EmbeddingStore.embedding.max_inner_product
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Got unexpected value for distance: {self._distance_strategy}. "
|
|
|
|
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
results = self.__query_collection(embedding=embedding, k=k, filter=filter)
|
|
|
|
|
|
|
|
return self._results_to_docs_and_scores(results)
|
|
|
|
|
|
|
|
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs and scores from results."""
|
|
|
|
docs = [
|
|
|
|
(
|
|
|
|
Document(
|
|
|
|
page_content=result.EmbeddingStore.document,
|
|
|
|
metadata=result.EmbeddingStore.cmetadata,
|
|
|
|
),
|
|
|
|
result.distance if self.embedding_function is not None else None,
|
|
|
|
)
|
|
|
|
for result in results
|
|
|
|
]
|
|
|
|
return docs
|
|
|
|
|
2024-02-05 19:22:06 +00:00
|
|
|
def _create_filter_clause(self, key, value): # type: ignore[no-untyped-def]
|
Added more filtering options to pgvector vectorstore (#14852)
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 00:01:22 +00:00
|
|
|
IN, NIN, BETWEEN, GT, LT, NE = "in", "nin", "between", "gt", "lt", "ne"
|
|
|
|
EQ, LIKE, CONTAINS, OR, AND = "eq", "like", "contains", "or", "and"
|
|
|
|
|
|
|
|
value_case_insensitive = {k.lower(): v for k, v in value.items()}
|
|
|
|
if IN in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext.in_(
|
|
|
|
value_case_insensitive[IN]
|
|
|
|
)
|
|
|
|
elif NIN in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext.not_in(
|
|
|
|
value_case_insensitive[NIN]
|
|
|
|
)
|
|
|
|
elif BETWEEN in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext.between(
|
|
|
|
str(value_case_insensitive[BETWEEN][0]),
|
|
|
|
str(value_case_insensitive[BETWEEN][1]),
|
|
|
|
)
|
|
|
|
elif GT in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext > str(
|
|
|
|
value_case_insensitive[GT]
|
|
|
|
)
|
|
|
|
elif LT in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext < str(
|
|
|
|
value_case_insensitive[LT]
|
|
|
|
)
|
|
|
|
elif NE in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext != str(
|
|
|
|
value_case_insensitive[NE]
|
|
|
|
)
|
|
|
|
elif EQ in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext == str(
|
|
|
|
value_case_insensitive[EQ]
|
|
|
|
)
|
|
|
|
elif LIKE in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext.like(
|
|
|
|
value_case_insensitive[LIKE]
|
|
|
|
)
|
|
|
|
elif CONTAINS in map(str.lower, value):
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[key].astext.contains(
|
|
|
|
value_case_insensitive[CONTAINS]
|
|
|
|
)
|
|
|
|
elif OR in map(str.lower, value):
|
|
|
|
or_clauses = [
|
|
|
|
self._create_filter_clause(key, sub_value)
|
|
|
|
for sub_value in value_case_insensitive[OR]
|
|
|
|
]
|
2024-01-17 17:10:43 +00:00
|
|
|
filter_by_metadata = sqlalchemy.or_(*or_clauses)
|
Added more filtering options to pgvector vectorstore (#14852)
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 00:01:22 +00:00
|
|
|
elif AND in map(str.lower, value):
|
|
|
|
and_clauses = [
|
|
|
|
self._create_filter_clause(key, sub_value)
|
|
|
|
for sub_value in value_case_insensitive[AND]
|
|
|
|
]
|
2024-01-17 17:10:43 +00:00
|
|
|
filter_by_metadata = sqlalchemy.and_(*and_clauses)
|
Added more filtering options to pgvector vectorstore (#14852)
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 00:01:22 +00:00
|
|
|
|
|
|
|
else:
|
|
|
|
filter_by_metadata = None
|
|
|
|
|
|
|
|
return filter_by_metadata
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
def __query_collection(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[Dict[str, str]] = None,
|
|
|
|
) -> List[Any]:
|
|
|
|
"""Query the collection."""
|
2024-02-05 19:22:06 +00:00
|
|
|
with Session(self._bind) as session: # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
raise ValueError("Collection not found")
|
|
|
|
|
|
|
|
filter_by = self.EmbeddingStore.collection_id == collection.uuid
|
|
|
|
|
|
|
|
if filter is not None:
|
|
|
|
filter_clauses = []
|
Added more filtering options to pgvector vectorstore (#14852)
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 00:01:22 +00:00
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
for key, value in filter.items():
|
|
|
|
if isinstance(value, dict):
|
Added more filtering options to pgvector vectorstore (#14852)
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-02 00:01:22 +00:00
|
|
|
filter_by_metadata = self._create_filter_clause(key, value)
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
if filter_by_metadata is not None:
|
|
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
else:
|
|
|
|
filter_by_metadata = self.EmbeddingStore.cmetadata[
|
|
|
|
key
|
|
|
|
].astext == str(value)
|
|
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
|
|
|
|
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
|
|
|
|
|
|
|
|
_type = self.EmbeddingStore
|
|
|
|
|
|
|
|
results: List[Any] = (
|
|
|
|
session.query(
|
|
|
|
self.EmbeddingStore,
|
|
|
|
self.distance_strategy(embedding).label("distance"), # type: ignore
|
|
|
|
)
|
|
|
|
.filter(filter_by)
|
|
|
|
.order_by(sqlalchemy.asc("distance"))
|
|
|
|
.join(
|
|
|
|
self.CollectionStore,
|
|
|
|
self.EmbeddingStore.collection_id == self.CollectionStore.uuid,
|
|
|
|
)
|
|
|
|
.limit(k)
|
|
|
|
.all()
|
|
|
|
)
|
|
|
|
return results
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding: Embedding to look up documents similar to.
|
|
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query vector.
|
|
|
|
"""
|
|
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return _results_to_docs(docs_and_scores)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls: Type[PGVector],
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVector:
|
|
|
|
"""
|
|
|
|
Return VectorStore initialized from texts and embeddings.
|
|
|
|
Postgres connection string is required
|
|
|
|
"Either pass it as a parameter
|
|
|
|
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
|
|
|
"""
|
|
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
|
|
|
|
return cls.__from(
|
|
|
|
texts,
|
|
|
|
embeddings,
|
|
|
|
embedding,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
distance_strategy=distance_strategy,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_embeddings(
|
|
|
|
cls,
|
|
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVector:
|
|
|
|
"""Construct PGVector wrapper from raw documents and pre-
|
|
|
|
generated embeddings.
|
|
|
|
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
|
|
Postgres connection string is required
|
|
|
|
"Either pass it as a parameter
|
|
|
|
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.vectorstores import PGVector
|
|
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
text_embeddings = embeddings.embed_documents(texts)
|
|
|
|
text_embedding_pairs = list(zip(texts, text_embeddings))
|
|
|
|
faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
|
|
|
|
"""
|
|
|
|
texts = [t[0] for t in text_embeddings]
|
|
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
|
|
|
|
return cls.__from(
|
|
|
|
texts,
|
|
|
|
embeddings,
|
|
|
|
embedding,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
distance_strategy=distance_strategy,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_existing_index(
|
|
|
|
cls: Type[PGVector],
|
|
|
|
embedding: Embeddings,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVector:
|
|
|
|
"""
|
|
|
|
Get instance of an existing PGVector store.This method will
|
|
|
|
return the instance of the store without inserting any new
|
|
|
|
embeddings
|
|
|
|
"""
|
|
|
|
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
store = cls(
|
|
|
|
connection_string=connection_string,
|
|
|
|
collection_name=collection_name,
|
|
|
|
embedding_function=embedding,
|
|
|
|
distance_strategy=distance_strategy,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
)
|
|
|
|
|
|
|
|
return store
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
|
|
|
connection_string: str = get_from_dict_or_env(
|
|
|
|
data=kwargs,
|
|
|
|
key="connection_string",
|
|
|
|
env_key="PGVECTOR_CONNECTION_STRING",
|
|
|
|
)
|
|
|
|
|
|
|
|
if not connection_string:
|
|
|
|
raise ValueError(
|
|
|
|
"Postgres connection string is required"
|
|
|
|
"Either pass it as a parameter"
|
|
|
|
"or set the PGVECTOR_CONNECTION_STRING environment variable."
|
|
|
|
)
|
|
|
|
|
|
|
|
return connection_string
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_documents(
|
|
|
|
cls: Type[PGVector],
|
|
|
|
documents: List[Document],
|
|
|
|
embedding: Embeddings,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVector:
|
|
|
|
"""
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
|
|
Postgres connection string is required
|
|
|
|
"Either pass it as a parameter
|
|
|
|
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
|
|
|
"""
|
|
|
|
|
|
|
|
texts = [d.page_content for d in documents]
|
|
|
|
metadatas = [d.metadata for d in documents]
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
kwargs["connection_string"] = connection_string
|
|
|
|
|
|
|
|
return cls.from_texts(
|
|
|
|
texts=texts,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
embedding=embedding,
|
|
|
|
distance_strategy=distance_strategy,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def connection_string_from_db_params(
|
|
|
|
cls,
|
|
|
|
driver: str,
|
|
|
|
host: str,
|
|
|
|
port: int,
|
|
|
|
database: str,
|
|
|
|
user: str,
|
|
|
|
password: str,
|
|
|
|
) -> str:
|
|
|
|
"""Return connection string from database parameters."""
|
|
|
|
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
|
|
|
|
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
|
|
"""
|
|
|
|
The 'correct' relevance function
|
|
|
|
may differ depending on a few things, including:
|
|
|
|
- the distance / similarity metric used by the VectorStore
|
|
|
|
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
|
|
- embedding dimensionality
|
|
|
|
- etc.
|
|
|
|
"""
|
|
|
|
if self.override_relevance_score_fn is not None:
|
|
|
|
return self.override_relevance_score_fn
|
|
|
|
|
|
|
|
# Default strategy is to rely on distance strategy provided
|
|
|
|
# in vectorstore constructor
|
|
|
|
if self._distance_strategy == DistanceStrategy.COSINE:
|
|
|
|
return self._cosine_relevance_score_fn
|
|
|
|
elif self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
|
|
|
return self._euclidean_relevance_score_fn
|
|
|
|
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
|
|
|
return self._max_inner_product_relevance_score_fn
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"No supported normalization function"
|
|
|
|
f" for distance_strategy of {self._distance_strategy}."
|
|
|
|
"Consider providing relevance_score_fn to PGVector constructor."
|
|
|
|
)
|
|
|
|
|
|
|
|
def max_marginal_relevance_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
filter: Optional[Dict[str, str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs selected using the maximal marginal relevance with score
|
|
|
|
to embedding vector.
|
|
|
|
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
|
among selected documents.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding: Embedding to look up documents similar to.
|
|
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
|
|
Defaults to 20.
|
|
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
|
|
of diversity among the results with 0 corresponding
|
|
|
|
to maximum diversity and 1 to minimum diversity.
|
|
|
|
Defaults to 0.5.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
|
|
|
relevance to the query and score for each.
|
|
|
|
"""
|
|
|
|
results = self.__query_collection(embedding=embedding, k=fetch_k, filter=filter)
|
|
|
|
|
|
|
|
embedding_list = [result.EmbeddingStore.embedding for result in results]
|
|
|
|
|
|
|
|
mmr_selected = maximal_marginal_relevance(
|
|
|
|
np.array(embedding, dtype=np.float32),
|
|
|
|
embedding_list,
|
|
|
|
k=k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
)
|
|
|
|
|
|
|
|
candidates = self._results_to_docs_and_scores(results)
|
|
|
|
|
|
|
|
return [r for i, r in enumerate(candidates) if i in mmr_selected]
|
|
|
|
|
|
|
|
def max_marginal_relevance_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
filter: Optional[Dict[str, str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
|
among selected documents.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): Text to look up documents similar to.
|
|
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
|
|
Defaults to 20.
|
|
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
|
|
of diversity among the results with 0 corresponding
|
|
|
|
to maximum diversity and 1 to minimum diversity.
|
|
|
|
Defaults to 0.5.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document]: List of Documents selected by maximal marginal relevance.
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(query)
|
|
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
|
|
embedding,
|
|
|
|
k=k,
|
|
|
|
fetch_k=fetch_k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
filter=filter,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
def max_marginal_relevance_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs selected using the maximal marginal relevance with score.
|
|
|
|
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
|
among selected documents.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): Text to look up documents similar to.
|
|
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
|
|
Defaults to 20.
|
|
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
|
|
of diversity among the results with 0 corresponding
|
|
|
|
to maximum diversity and 1 to minimum diversity.
|
|
|
|
Defaults to 0.5.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
|
|
|
relevance to the query and score for each.
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(query)
|
|
|
|
docs = self.max_marginal_relevance_search_with_score_by_vector(
|
|
|
|
embedding=embedding,
|
|
|
|
k=k,
|
|
|
|
fetch_k=fetch_k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
filter=filter,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
filter: Optional[Dict[str, str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs selected using the maximal marginal relevance
|
|
|
|
to embedding vector.
|
|
|
|
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
|
among selected documents.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding (str): Text to look up documents similar to.
|
|
|
|
k (int): Number of Documents to return. Defaults to 4.
|
|
|
|
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
|
|
|
Defaults to 20.
|
|
|
|
lambda_mult (float): Number between 0 and 1 that determines the degree
|
|
|
|
of diversity among the results with 0 corresponding
|
|
|
|
to maximum diversity and 1 to minimum diversity.
|
|
|
|
Defaults to 0.5.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Document]: List of Documents selected by maximal marginal relevance.
|
|
|
|
"""
|
|
|
|
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
|
|
|
|
embedding,
|
|
|
|
k=k,
|
|
|
|
fetch_k=fetch_k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
filter=filter,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
return _results_to_docs(docs_and_scores)
|
|
|
|
|
|
|
|
async def amax_marginal_relevance_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
filter: Optional[Dict[str, str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs selected using the maximal marginal relevance."""
|
|
|
|
|
|
|
|
# This is a temporary workaround to make the similarity search
|
|
|
|
# asynchronous. The proper solution is to make the similarity search
|
|
|
|
# asynchronous in the vector store implementations.
|
2023-12-29 20:34:03 +00:00
|
|
|
return await run_in_executor(
|
|
|
|
None,
|
2023-12-11 21:53:30 +00:00
|
|
|
self.max_marginal_relevance_search_by_vector,
|
|
|
|
embedding,
|
|
|
|
k=k,
|
|
|
|
fetch_k=fetch_k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
filter=filter,
|
|
|
|
**kwargs,
|
|
|
|
)
|