mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
193 lines
7.9 KiB
Python
193 lines
7.9 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
from typing import TYPE_CHECKING, Any, Optional
|
||
|
|
||
|
from langchain_core.callbacks import BaseCallbackHandler
|
||
|
from langchain_core.utils import get_from_env
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from whylogs.api.logger.logger import Logger
|
||
|
|
||
|
diagnostic_logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def import_langkit(
|
||
|
sentiment: bool = False,
|
||
|
toxicity: bool = False,
|
||
|
themes: bool = False,
|
||
|
) -> Any:
|
||
|
"""Import the langkit python package and raise an error if it is not installed.
|
||
|
|
||
|
Args:
|
||
|
sentiment: Whether to import the langkit.sentiment module. Defaults to False.
|
||
|
toxicity: Whether to import the langkit.toxicity module. Defaults to False.
|
||
|
themes: Whether to import the langkit.themes module. Defaults to False.
|
||
|
|
||
|
Returns:
|
||
|
The imported langkit module.
|
||
|
"""
|
||
|
try:
|
||
|
import langkit # noqa: F401
|
||
|
import langkit.regexes # noqa: F401
|
||
|
import langkit.textstat # noqa: F401
|
||
|
|
||
|
if sentiment:
|
||
|
import langkit.sentiment # noqa: F401
|
||
|
if toxicity:
|
||
|
import langkit.toxicity # noqa: F401
|
||
|
if themes:
|
||
|
import langkit.themes # noqa: F401
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"To use the whylabs callback manager you need to have the `langkit` python "
|
||
|
"package installed. Please install it with `pip install langkit`."
|
||
|
)
|
||
|
return langkit
|
||
|
|
||
|
|
||
|
class WhyLabsCallbackHandler(BaseCallbackHandler):
|
||
|
"""
|
||
|
Callback Handler for logging to WhyLabs. This callback handler utilizes
|
||
|
`langkit` to extract features from the prompts & responses when interacting with
|
||
|
an LLM. These features can be used to guardrail, evaluate, and observe interactions
|
||
|
over time to detect issues relating to hallucinations, prompt engineering,
|
||
|
or output validation. LangKit is an LLM monitoring toolkit developed by WhyLabs.
|
||
|
|
||
|
Here are some examples of what can be monitored with LangKit:
|
||
|
* Text Quality
|
||
|
- readability score
|
||
|
- complexity and grade scores
|
||
|
* Text Relevance
|
||
|
- Similarity scores between prompt/responses
|
||
|
- Similarity scores against user-defined themes
|
||
|
- Topic classification
|
||
|
* Security and Privacy
|
||
|
- patterns - count of strings matching a user-defined regex pattern group
|
||
|
- jailbreaks - similarity scores with respect to known jailbreak attempts
|
||
|
- prompt injection - similarity scores with respect to known prompt attacks
|
||
|
- refusals - similarity scores with respect to known LLM refusal responses
|
||
|
* Sentiment and Toxicity
|
||
|
- sentiment analysis
|
||
|
- toxicity analysis
|
||
|
|
||
|
For more information, see https://docs.whylabs.ai/docs/language-model-monitoring
|
||
|
or check out the LangKit repo here: https://github.com/whylabs/langkit
|
||
|
|
||
|
---
|
||
|
Args:
|
||
|
api_key (Optional[str]): WhyLabs API key. Optional because the preferred
|
||
|
way to specify the API key is with environment variable
|
||
|
WHYLABS_API_KEY.
|
||
|
org_id (Optional[str]): WhyLabs organization id to write profiles to.
|
||
|
Optional because the preferred way to specify the organization id is
|
||
|
with environment variable WHYLABS_DEFAULT_ORG_ID.
|
||
|
dataset_id (Optional[str]): WhyLabs dataset id to write profiles to.
|
||
|
Optional because the preferred way to specify the dataset id is
|
||
|
with environment variable WHYLABS_DEFAULT_DATASET_ID.
|
||
|
sentiment (bool): Whether to enable sentiment analysis. Defaults to False.
|
||
|
toxicity (bool): Whether to enable toxicity analysis. Defaults to False.
|
||
|
themes (bool): Whether to enable theme analysis. Defaults to False.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, logger: Logger, handler: Any):
|
||
|
"""Initiate the rolling logger."""
|
||
|
super().__init__()
|
||
|
if hasattr(handler, "init"):
|
||
|
handler.init(self)
|
||
|
if hasattr(handler, "_get_callbacks"):
|
||
|
self._callbacks = handler._get_callbacks()
|
||
|
else:
|
||
|
self._callbacks = dict()
|
||
|
diagnostic_logger.warning("initialized handler without callbacks.")
|
||
|
self._logger = logger
|
||
|
|
||
|
def flush(self) -> None:
|
||
|
"""Explicitly write current profile if using a rolling logger."""
|
||
|
if self._logger and hasattr(self._logger, "_do_rollover"):
|
||
|
self._logger._do_rollover()
|
||
|
diagnostic_logger.info("Flushing WhyLabs logger, writing profile...")
|
||
|
|
||
|
def close(self) -> None:
|
||
|
"""Close any loggers to allow writing out of any profiles before exiting."""
|
||
|
if self._logger and hasattr(self._logger, "close"):
|
||
|
self._logger.close()
|
||
|
diagnostic_logger.info("Closing WhyLabs logger, see you next time!")
|
||
|
|
||
|
def __enter__(self) -> WhyLabsCallbackHandler:
|
||
|
return self
|
||
|
|
||
|
def __exit__(
|
||
|
self, exception_type: Any, exception_value: Any, traceback: Any
|
||
|
) -> None:
|
||
|
self.close()
|
||
|
|
||
|
@classmethod
|
||
|
def from_params(
|
||
|
cls,
|
||
|
*,
|
||
|
api_key: Optional[str] = None,
|
||
|
org_id: Optional[str] = None,
|
||
|
dataset_id: Optional[str] = None,
|
||
|
sentiment: bool = False,
|
||
|
toxicity: bool = False,
|
||
|
themes: bool = False,
|
||
|
logger: Optional[Logger] = None,
|
||
|
) -> WhyLabsCallbackHandler:
|
||
|
"""Instantiate whylogs Logger from params.
|
||
|
|
||
|
Args:
|
||
|
api_key (Optional[str]): WhyLabs API key. Optional because the preferred
|
||
|
way to specify the API key is with environment variable
|
||
|
WHYLABS_API_KEY.
|
||
|
org_id (Optional[str]): WhyLabs organization id to write profiles to.
|
||
|
If not set must be specified in environment variable
|
||
|
WHYLABS_DEFAULT_ORG_ID.
|
||
|
dataset_id (Optional[str]): The model or dataset this callback is gathering
|
||
|
telemetry for. If not set must be specified in environment variable
|
||
|
WHYLABS_DEFAULT_DATASET_ID.
|
||
|
sentiment (bool): If True will initialize a model to perform
|
||
|
sentiment analysis compound score. Defaults to False and will not gather
|
||
|
this metric.
|
||
|
toxicity (bool): If True will initialize a model to score
|
||
|
toxicity. Defaults to False and will not gather this metric.
|
||
|
themes (bool): If True will initialize a model to calculate
|
||
|
distance to configured themes. Defaults to None and will not gather this
|
||
|
metric.
|
||
|
logger (Optional[Logger]): If specified will bind the configured logger as
|
||
|
the telemetry gathering agent. Defaults to LangKit schema with periodic
|
||
|
WhyLabs writer.
|
||
|
"""
|
||
|
# langkit library will import necessary whylogs libraries
|
||
|
import_langkit(sentiment=sentiment, toxicity=toxicity, themes=themes)
|
||
|
|
||
|
import whylogs as why
|
||
|
from langkit.callback_handler import get_callback_instance
|
||
|
from whylogs.api.writer.whylabs import WhyLabsWriter
|
||
|
from whylogs.experimental.core.udf_schema import udf_schema
|
||
|
|
||
|
if logger is None:
|
||
|
api_key = api_key or get_from_env("api_key", "WHYLABS_API_KEY")
|
||
|
org_id = org_id or get_from_env("org_id", "WHYLABS_DEFAULT_ORG_ID")
|
||
|
dataset_id = dataset_id or get_from_env(
|
||
|
"dataset_id", "WHYLABS_DEFAULT_DATASET_ID"
|
||
|
)
|
||
|
whylabs_writer = WhyLabsWriter(
|
||
|
api_key=api_key, org_id=org_id, dataset_id=dataset_id
|
||
|
)
|
||
|
|
||
|
whylabs_logger = why.logger(
|
||
|
mode="rolling", interval=5, when="M", schema=udf_schema()
|
||
|
)
|
||
|
|
||
|
whylabs_logger.append_writer(writer=whylabs_writer)
|
||
|
else:
|
||
|
diagnostic_logger.info("Using passed in whylogs logger {logger}")
|
||
|
whylabs_logger = logger
|
||
|
|
||
|
callback_handler_cls = get_callback_instance(logger=whylabs_logger, impl=cls)
|
||
|
diagnostic_logger.info(
|
||
|
"Started whylogs Logger with WhyLabsWriter and initialized LangKit. 📝"
|
||
|
)
|
||
|
return callback_handler_cls
|