2023-10-26 01:47:42 +00:00
|
|
|
from typing import List, Optional
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
|
|
|
|
from langchain.chains.openai_functions import create_structured_output_chain
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.prompts import ChatPromptTemplate
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
2024-01-02 21:47:11 +00:00
|
|
|
from langchain_community.graphs import Neo4jGraph
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
from langchain_core.runnables import RunnablePassthrough
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
# Connection to Neo4j
|
|
|
|
graph = Neo4jGraph()
|
|
|
|
|
|
|
|
# Cypher validation tool for relationship directions
|
|
|
|
corrector_schema = [
|
|
|
|
Schema(el["start"], el["type"], el["end"])
|
|
|
|
for el in graph.structured_schema.get("relationships")
|
|
|
|
]
|
|
|
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
|
|
|
|
|
|
|
# LLMs
|
|
|
|
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
|
|
|
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
# Extract entities from text
|
|
|
|
class Entities(BaseModel):
|
|
|
|
"""Identifying information about entities."""
|
|
|
|
|
|
|
|
names: List[str] = Field(
|
|
|
|
...,
|
2023-10-27 02:44:30 +00:00
|
|
|
description="All the person, organization, or business entities that "
|
|
|
|
"appear in the text",
|
2023-10-26 01:47:42 +00:00
|
|
|
)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
|
|
|
"You are extracting organization and person entities from the text.",
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"human",
|
2023-10-27 02:44:30 +00:00
|
|
|
"Use the given format to extract information from the following "
|
|
|
|
"input: {question}",
|
2023-10-26 01:47:42 +00:00
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
# Fulltext index query
|
|
|
|
def map_to_database(entities: Entities) -> Optional[str]:
|
|
|
|
result = ""
|
|
|
|
for entity in entities.names:
|
|
|
|
response = graph.query(
|
|
|
|
"CALL db.index.fulltext.queryNodes('entity', $entity + '*', {limit:1})"
|
|
|
|
" YIELD node,score RETURN node.name AS result",
|
2023-10-27 02:44:30 +00:00
|
|
|
{"entity": entity},
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
try:
|
|
|
|
result += f"{entity} maps to {response[0]['result']} in database\n"
|
|
|
|
except IndexError:
|
|
|
|
pass
|
|
|
|
return result
|
|
|
|
|
2023-10-27 02:44:30 +00:00
|
|
|
|
|
|
|
entity_chain = create_structured_output_chain(Entities, qa_llm, prompt)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# Generate Cypher statement based on natural language input
|
|
|
|
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
|
|
|
{schema}
|
|
|
|
Entities in the question map to the following database values:
|
|
|
|
{entities_list}
|
|
|
|
Question: {question}
|
2023-10-27 02:44:30 +00:00
|
|
|
Cypher query:""" # noqa: E501
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
cypher_prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
|
|
|
"Given an input question, convert it to a Cypher query. No pre-amble.",
|
|
|
|
),
|
|
|
|
("human", cypher_template),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
cypher_response = (
|
|
|
|
RunnablePassthrough.assign(names=entity_chain)
|
|
|
|
| RunnablePassthrough.assign(
|
2023-10-27 02:44:30 +00:00
|
|
|
entities_list=lambda x: map_to_database(x["names"]["function"]),
|
2023-10-26 01:47:42 +00:00
|
|
|
schema=lambda _: graph.get_schema,
|
|
|
|
)
|
|
|
|
| cypher_prompt
|
|
|
|
| cypher_llm.bind(stop=["\nCypherResult:"])
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
|
|
|
|
|
|
|
# Generate natural language response based on database results
|
|
|
|
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
|
|
|
|
Question: {question}
|
|
|
|
Cypher query: {query}
|
2023-10-27 02:44:30 +00:00
|
|
|
Cypher Response: {response}""" # noqa: E501
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
response_prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
(
|
|
|
|
"system",
|
2023-10-27 02:44:30 +00:00
|
|
|
"Given an input question and Cypher response, convert it to a natural"
|
|
|
|
" language answer. No pre-amble.",
|
2023-10-26 01:47:42 +00:00
|
|
|
),
|
|
|
|
("human", response_template),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
RunnablePassthrough.assign(query=cypher_response)
|
|
|
|
| RunnablePassthrough.assign(
|
|
|
|
response=lambda x: graph.query(cypher_validation(x["query"])),
|
|
|
|
)
|
|
|
|
| response_prompt
|
|
|
|
| qa_llm
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
2023-11-02 19:46:02 +00:00
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
|
|
|
|
|
|
|
|
class Question(BaseModel):
|
|
|
|
question: str
|
|
|
|
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|