langchain/docs/extras/guides/evaluation/llm_math.ipynb

309 lines
7.3 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "a4734146",
"metadata": {},
"source": [
"# LLM Math\n",
"\n",
"Evaluating chains that know how to do math."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fdd7afae",
"metadata": {},
"outputs": [],
"source": [
"# Comment this out if you are NOT using tracing\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ce05ffea",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d028a511cede4de2b845b9a9954d6bea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/21.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset json/LangChainDatasets--llm-math to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a71c8e5a21dd4da5a20a354b544f7a58",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae530ca624154a1a934075c47d1093a6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data: 0%| | 0.00/631 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a4968df05d84bc483aa2c5039aecafe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating train split: 0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--llm-math-509b11d101165afa/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9a2caed96225410fb1cc0f8f155eb766",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"llm-math\")"
]
},
{
"cell_type": "markdown",
"id": "8a998d6f",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing math."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7078f7f8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains import LLMMathChain"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "2bd70c46",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "954c3270",
"metadata": {},
"outputs": [],
"source": [
"chain = LLMMathChain(llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f252027e",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(dataset)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "c8af7041",
"metadata": {},
"outputs": [],
"source": [
"numeric_output = [float(p[\"answer\"].strip().strip(\"Answer: \")) for p in predictions]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "cc09ffe4",
"metadata": {},
"outputs": [],
"source": [
"correct = [example[\"answer\"] == numeric_output[i] for i, example in enumerate(dataset)]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "585244e4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(correct) / len(correct)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "0d14ac78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input: 5\n",
"expected output : 5.0\n",
"prediction: 5.0\n",
"input: 5 + 3\n",
"expected output : 8.0\n",
"prediction: 8.0\n",
"input: 2^3.171\n",
"expected output : 9.006708689094099\n",
"prediction: 9.006708689094099\n",
"input: 2 ^3.171 \n",
"expected output : 9.006708689094099\n",
"prediction: 9.006708689094099\n",
"input: two to the power of three point one hundred seventy one\n",
"expected output : 9.006708689094099\n",
"prediction: 9.006708689094099\n",
"input: five + three squared minus 1\n",
"expected output : 13.0\n",
"prediction: 13.0\n",
"input: 2097 times 27.31\n",
"expected output : 57269.07\n",
"prediction: 57269.07\n",
"input: two thousand ninety seven times twenty seven point thirty one\n",
"expected output : 57269.07\n",
"prediction: 57269.07\n",
"input: 209758 / 2714\n",
"expected output : 77.28739867354459\n",
"prediction: 77.28739867354459\n",
"input: 209758.857 divided by 2714.31\n",
"expected output : 77.27888745205964\n",
"prediction: 77.27888745205964\n"
]
}
],
"source": [
"for i, example in enumerate(dataset):\n",
" print(\"input: \", example[\"question\"])\n",
" print(\"expected output :\", example[\"answer\"])\n",
" print(\"prediction: \", numeric_output[i])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9021ffd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}