2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import LLM
|
|
|
|
from langchain_core.outputs import Generation, LLMResult
|
|
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from requests.exceptions import HTTPError
|
|
|
|
from tenacity import (
|
|
|
|
before_sleep_log,
|
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 4
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(retry_if_exception_type(HTTPError)),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _generate_with_retry(**_kwargs: Any) -> Any:
|
|
|
|
resp = llm.client.call(**_kwargs)
|
|
|
|
if resp.status_code == 200:
|
|
|
|
return resp
|
|
|
|
elif resp.status_code in [400, 401]:
|
|
|
|
raise ValueError(
|
|
|
|
f"status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise HTTPError(
|
|
|
|
f"HTTP error occurred: status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}",
|
|
|
|
response=resp,
|
|
|
|
)
|
|
|
|
|
|
|
|
return _generate_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
|
|
|
|
stream_resps = []
|
|
|
|
resps = llm.client.call(**_kwargs)
|
|
|
|
for resp in resps:
|
|
|
|
if resp.status_code == 200:
|
|
|
|
stream_resps.append(resp)
|
|
|
|
elif resp.status_code in [400, 401]:
|
|
|
|
raise ValueError(
|
|
|
|
f"status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}"
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise HTTPError(
|
|
|
|
f"HTTP error occurred: status_code: {resp.status_code} \n "
|
|
|
|
f"code: {resp.code} \n message: {resp.message}",
|
|
|
|
response=resp,
|
|
|
|
)
|
|
|
|
return stream_resps
|
|
|
|
|
|
|
|
return _stream_generate_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class Tongyi(LLM):
|
|
|
|
"""Tongyi Qwen large language models.
|
|
|
|
|
|
|
|
To use, you should have the ``dashscope`` python package installed, and the
|
|
|
|
environment variable ``DASHSCOPE_API_KEY`` set with your API key, or pass
|
|
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import Tongyi
|
|
|
|
Tongyi = tongyi()
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def is_lc_serializable(cls) -> bool:
|
|
|
|
return False
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
2023-12-18 16:35:53 +00:00
|
|
|
model_name: str = "qwen-plus"
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
"""Model name to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
|
|
top_p: float = 0.8
|
|
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
|
|
|
|
dashscope_api_key: Optional[str] = None
|
|
|
|
"""Dashscope api key provide by alicloud."""
|
|
|
|
|
|
|
|
n: int = 1
|
|
|
|
"""How many completions to generate for each prompt."""
|
|
|
|
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
|
|
|
|
max_retries: int = 10
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
|
|
|
|
prefix_messages: List = Field(default_factory=list)
|
|
|
|
"""Series of messages for Chat input."""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "tongyi"
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
|
|
|
|
try:
|
|
|
|
import dashscope
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import dashscope python package. "
|
|
|
|
"Please install it with `pip install dashscope`."
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
values["client"] = dashscope.Generation
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(
|
|
|
|
"`dashscope` has no `Generation` attribute, this is likely "
|
|
|
|
"due to an old version of the dashscope package. Try upgrading it "
|
|
|
|
"with `pip install --upgrade dashscope`."
|
|
|
|
)
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
|
|
normal_params = {
|
|
|
|
"top_p": self.top_p,
|
|
|
|
}
|
|
|
|
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
"""Call out to Tongyi's generate endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt: The prompt to pass into the model.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The string generated by the model.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
response = tongyi("Tell me a joke.")
|
|
|
|
"""
|
|
|
|
params: Dict[str, Any] = {
|
|
|
|
**{"model": self.model_name},
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
completion = generate_with_retry(
|
|
|
|
self,
|
|
|
|
prompt=prompt,
|
|
|
|
**params,
|
|
|
|
)
|
|
|
|
return completion["output"]["text"]
|
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
prompts: List[str],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> LLMResult:
|
|
|
|
generations = []
|
|
|
|
params: Dict[str, Any] = {
|
|
|
|
**{"model": self.model_name},
|
|
|
|
**self._default_params,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
if self.streaming:
|
|
|
|
if len(prompts) > 1:
|
|
|
|
raise ValueError("Cannot stream results with multiple prompts.")
|
|
|
|
params["stream"] = True
|
|
|
|
temp = ""
|
|
|
|
for stream_resp in stream_generate_with_retry(
|
|
|
|
self, prompt=prompts[0], **params
|
|
|
|
):
|
|
|
|
if run_manager:
|
|
|
|
stream_resp_text = stream_resp["output"]["text"]
|
|
|
|
stream_resp_text = stream_resp_text.replace(temp, "")
|
|
|
|
# Ali Cloud's streaming transmission interface, each return content
|
|
|
|
# will contain the output
|
|
|
|
# of the previous round(as of September 20, 2023, future updates to
|
|
|
|
# the Alibaba Cloud API may vary)
|
|
|
|
run_manager.on_llm_new_token(stream_resp_text)
|
|
|
|
# The implementation of streaming transmission primarily relies on
|
|
|
|
# the "on_llm_new_token" method
|
|
|
|
# of the streaming callback.
|
|
|
|
temp = stream_resp["output"]["text"]
|
|
|
|
|
|
|
|
generations.append(
|
|
|
|
[
|
|
|
|
Generation(
|
|
|
|
text=stream_resp["output"]["text"],
|
|
|
|
generation_info=dict(
|
|
|
|
finish_reason=stream_resp["output"]["finish_reason"],
|
|
|
|
),
|
|
|
|
)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
generations.reverse()
|
|
|
|
# In the official implementation of the OpenAI API,
|
|
|
|
# the "generations" parameter passed to LLMResult seems to be a 1*1*1
|
|
|
|
# two-dimensional list
|
|
|
|
# (including in non-streaming mode).
|
|
|
|
# Considering that Alibaba Cloud's streaming transmission
|
|
|
|
# (as of September 20, 2023, future updates to the Alibaba Cloud API may
|
|
|
|
# vary)
|
|
|
|
# includes the output of the previous round in each return,
|
|
|
|
# reversing this "generations" list should suffice
|
|
|
|
# (This is the solution with the least amount of changes to the source code,
|
|
|
|
# while still allowing for convenient modifications in the future,
|
|
|
|
# although it may result in slightly more memory consumption).
|
|
|
|
else:
|
|
|
|
for prompt in prompts:
|
|
|
|
completion = generate_with_retry(
|
|
|
|
self,
|
|
|
|
prompt=prompt,
|
|
|
|
**params,
|
|
|
|
)
|
|
|
|
generations.append(
|
|
|
|
[
|
|
|
|
Generation(
|
|
|
|
text=completion["output"]["text"],
|
|
|
|
generation_info=dict(
|
|
|
|
finish_reason=completion["output"]["finish_reason"],
|
|
|
|
),
|
|
|
|
)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
return LLMResult(generations=generations)
|