langchain/libs/partners/groq/tests/integration_tests/test_chat_models.py

408 lines
13 KiB
Python
Raw Normal View History

"""Test ChatGroq chat model."""
import json
from typing import Any, Optional
import pytest
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_groq import ChatGroq
from tests.unit_tests.fake.callbacks import (
FakeCallbackHandler,
FakeCallbackHandlerWithChatStart,
)
#
# Smoke test Runnable interface
#
@pytest.mark.scheduled
def test_invoke() -> None:
"""Test Chat wrapper."""
chat = ChatGroq(
temperature=0.7,
base_url=None,
groq_proxy=None,
timeout=10.0,
max_retries=3,
http_client=None,
n=1,
max_tokens=10,
default_headers=None,
default_query=None,
)
message = HumanMessage(content="Welcome to the Groqetship")
response = chat.invoke([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
async def test_ainvoke() -> None:
"""Test ainvoke tokens from ChatGroq."""
chat = ChatGroq(max_tokens=10)
result = await chat.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
assert isinstance(result, BaseMessage)
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_batch() -> None:
"""Test batch tokens from ChatGroq."""
chat = ChatGroq(max_tokens=10)
result = chat.batch(["Hello!", "Welcome to the Groqetship!"])
for token in result:
assert isinstance(token, BaseMessage)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_abatch() -> None:
"""Test abatch tokens from ChatGroq."""
chat = ChatGroq(max_tokens=10)
result = await chat.abatch(["Hello!", "Welcome to the Groqetship!"])
for token in result:
assert isinstance(token, BaseMessage)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_stream() -> None:
"""Test streaming tokens from Groq."""
chat = ChatGroq(max_tokens=10)
for token in chat.stream("Welcome to the Groqetship!"):
assert isinstance(token, BaseMessageChunk)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_astream() -> None:
"""Test streaming tokens from Groq."""
chat = ChatGroq(max_tokens=10)
full: Optional[BaseMessageChunk] = None
chunks_with_token_counts = 0
async for token in chat.astream("Welcome to the Groqetship!"):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
full = token if full is None else full + token
if token.usage_metadata is not None:
chunks_with_token_counts += 1
if chunks_with_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
#
# Test Legacy generate methods
#
@pytest.mark.scheduled
def test_generate() -> None:
"""Test sync generate."""
n = 1
chat = ChatGroq(max_tokens=10)
message = HumanMessage(content="Hello", n=1)
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == n
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_agenerate() -> None:
"""Test async generation."""
n = 1
chat = ChatGroq(max_tokens=10, n=1)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == n
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
#
# Test streaming flags in invoke and generate
#
@pytest.mark.scheduled
def test_invoke_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
chat = ChatGroq(
max_tokens=2,
streaming=True,
temperature=0,
callbacks=[callback_handler],
)
message = HumanMessage(content="Welcome to the Groqetship")
response = chat.invoke([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
async def test_agenerate_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandlerWithChatStart()
chat = ChatGroq(
max_tokens=10,
streaming=True,
temperature=0,
callbacks=[callback_handler],
)
message = HumanMessage(content="Welcome to the Groqetship")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output is not None
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
#
# Misc tests
#
def test_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
chat = ChatGroq(
max_tokens=2,
temperature=0,
callbacks=[callback],
)
list(chat.stream("Respond with the single word Hello", stop=["o"]))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert isinstance(generation, LLMResult)
assert generation.generations[0][0].text == "Hell"
def test_system_message() -> None:
"""Test ChatGroq wrapper with system message."""
chat = ChatGroq(max_tokens=10)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat.invoke([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
2024-04-09 23:29:59 +00:00
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
def test_tool_choice() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq()
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.invoke("Who was the 27 year old named Erick?")
assert isinstance(resp, AIMessage)
assert resp.content == "" # should just be tool call
tool_calls = resp.additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(resp.tool_calls, list)
assert len(resp.tool_calls) == 1
tool_call = resp.tool_calls[0]
assert tool_call["name"] == "MyTool"
assert tool_call["args"] == {"name": "Erick", "age": 27}
2024-04-09 23:29:59 +00:00
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
def test_tool_choice_bool() -> None:
"""Test that tool choice is respected just passing in True."""
llm = ChatGroq()
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice=True)
resp = with_tool.invoke("Who was the 27 year old named Erick?")
assert isinstance(resp, AIMessage)
assert resp.content == "" # should just be tool call
tool_calls = resp.additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
2024-04-09 23:29:59 +00:00
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
def test_streaming_tool_call() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq()
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.stream("Who was the 27 year old named Erick?")
additional_kwargs = None
for chunk in resp:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == "" # should just be tool call
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
tool_calls = additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(chunk, AIMessageChunk)
assert isinstance(chunk.tool_call_chunks, list)
assert len(chunk.tool_call_chunks) == 1
tool_call_chunk = chunk.tool_call_chunks[0]
assert tool_call_chunk["name"] == "MyTool"
assert isinstance(tool_call_chunk["args"], str)
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
2024-04-09 23:29:59 +00:00
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
async def test_astreaming_tool_call() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq()
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.astream("Who was the 27 year old named Erick?")
additional_kwargs = None
async for chunk in resp:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == "" # should just be tool call
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
tool_calls = additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
core[minor], ...: add tool calls message (#18947) core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor] ```python class ToolCall(TypedDict): name: str args: Dict[str, Any] id: Optional[str] class InvalidToolCall(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] error: Optional[str] class ToolCallChunk(TypedDict): name: Optional[str] args: Optional[str] id: Optional[str] index: Optional[int] class AIMessage(BaseMessage): ... tool_calls: List[ToolCall] = [] invalid_tool_calls: List[InvalidToolCall] = [] ... class AIMessageChunk(AIMessage, BaseMessageChunk): ... tool_call_chunks: Optional[List[ToolCallChunk]] = None ... ``` Important considerations: - Parsing logic occurs within different providers; - ~Changing output type is a breaking change for anyone doing explicit type checking;~ - ~Langsmith rendering will need to be updated: https://github.com/langchain-ai/langchainplus/pull/3561~ - ~Langserve will need to be updated~ - Adding chunks: - ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has non-null .tool_calls.~ - Tool call chunks are appended, merging when having equal values of `index`. - additional_kwargs accumulate the normal way. - During streaming: - ~Messages can change types (e.g., from AIMessageChunk to AIToolCallsMessageChunk)~ - Output parsers parse additional_kwargs (during .invoke they read off tool calls). Packages outside of `partners/`: - https://github.com/langchain-ai/langchain-cohere/pull/7 - https://github.com/langchain-ai/langchain-google/pull/123/files --------- Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
assert isinstance(chunk, AIMessageChunk)
assert isinstance(chunk.tool_call_chunks, list)
assert len(chunk.tool_call_chunks) == 1
tool_call_chunk = chunk.tool_call_chunks[0]
assert tool_call_chunk["name"] == "MyTool"
assert isinstance(tool_call_chunk["args"], str)
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
@pytest.mark.scheduled
def test_json_mode_structured_output() -> None:
"""Test with_structured_output with json"""
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
chat = ChatGroq().with_structured_output(Joke, method="json_mode")
result = chat.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)
assert type(result) == Joke
assert len(result.setup) != 0
assert len(result.punchline) != 0
# Groq does not currently support N > 1
# @pytest.mark.scheduled
# def test_chat_multiple_completions() -> None:
# """Test ChatGroq wrapper with multiple completions."""
# chat = ChatGroq(max_tokens=10, n=5)
# message = HumanMessage(content="Hello")
# response = chat._generate([message])
# assert isinstance(response, ChatResult)
# assert len(response.generations) == 5
# for generation in response.generations:
# assert isinstance(generation.message, BaseMessage)
# assert isinstance(generation.message.content, str)