mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
175 lines
6.1 KiB
Python
175 lines
6.1 KiB
Python
|
import http.client
|
||
|
import json
|
||
|
import ssl
|
||
|
from typing import Any, List, Mapping, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
|
||
|
|
||
|
class NIBittensorLLM(LLM):
|
||
|
"""NIBittensor LLMs
|
||
|
|
||
|
NIBittensorLLM is created by Neural Internet (https://neuralinternet.ai/),
|
||
|
powered by Bittensor, a decentralized network full of different AI models.
|
||
|
|
||
|
To analyze API_KEYS and logs of your usage visit
|
||
|
https://api.neuralinternet.ai/api-keys
|
||
|
https://api.neuralinternet.ai/logs
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import NIBittensorLLM
|
||
|
llm = NIBittensorLLM()
|
||
|
"""
|
||
|
|
||
|
system_prompt: Optional[str]
|
||
|
"""Provide system prompt that you want to supply it to model before every prompt"""
|
||
|
|
||
|
top_responses: Optional[int] = 0
|
||
|
"""Provide top_responses to get Top N miner responses on one request.May get delayed
|
||
|
Don't use in Production"""
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
return "NIBittensorLLM"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""
|
||
|
Wrapper around the bittensor top miner models. Its built by Neural Internet.
|
||
|
|
||
|
Call the Neural Internet's BTVEP Server and return the output.
|
||
|
|
||
|
Parameters (optional):
|
||
|
system_prompt(str): A system prompt defining how your model should respond.
|
||
|
top_responses(int): Total top miner responses to retrieve from Bittensor
|
||
|
protocol.
|
||
|
|
||
|
Return:
|
||
|
The generated response(s).
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import NIBittensorLLM
|
||
|
llm = NIBittensorLLM(system_prompt="Act like you are programmer with \
|
||
|
5+ years of experience.")
|
||
|
"""
|
||
|
|
||
|
# Creating HTTPS connection with SSL
|
||
|
context = ssl.create_default_context()
|
||
|
context.check_hostname = True
|
||
|
conn = http.client.HTTPSConnection("test.neuralinternet.ai", context=context)
|
||
|
|
||
|
# Sanitizing User Input before passing to API.
|
||
|
if isinstance(self.top_responses, int):
|
||
|
top_n = min(100, self.top_responses)
|
||
|
else:
|
||
|
top_n = 0
|
||
|
|
||
|
default_prompt = "You are an assistant which is created by Neural Internet(NI) \
|
||
|
in decentralized network named as a Bittensor."
|
||
|
if self.system_prompt is None:
|
||
|
system_prompt = (
|
||
|
default_prompt
|
||
|
+ " Your task is to provide accurate response based on user prompt"
|
||
|
)
|
||
|
else:
|
||
|
system_prompt = default_prompt + str(self.system_prompt)
|
||
|
|
||
|
# Retrieving API KEY to pass into header of each request
|
||
|
conn.request("GET", "/admin/api-keys/")
|
||
|
api_key_response = conn.getresponse()
|
||
|
api_keys_data = (
|
||
|
api_key_response.read().decode("utf-8").replace("\n", "").replace("\t", "")
|
||
|
)
|
||
|
api_keys_json = json.loads(api_keys_data)
|
||
|
api_key = api_keys_json[0]["api_key"]
|
||
|
|
||
|
# Creating Header and getting top benchmark miner uids
|
||
|
headers = {
|
||
|
"Content-Type": "application/json",
|
||
|
"Authorization": f"Bearer {api_key}",
|
||
|
"Endpoint-Version": "2023-05-19",
|
||
|
}
|
||
|
conn.request("GET", "/top_miner_uids", headers=headers)
|
||
|
miner_response = conn.getresponse()
|
||
|
miner_data = (
|
||
|
miner_response.read().decode("utf-8").replace("\n", "").replace("\t", "")
|
||
|
)
|
||
|
uids = json.loads(miner_data)
|
||
|
|
||
|
# Condition for benchmark miner response
|
||
|
if isinstance(uids, list) and uids and not top_n:
|
||
|
for uid in uids:
|
||
|
try:
|
||
|
payload = json.dumps(
|
||
|
{
|
||
|
"uids": [uid],
|
||
|
"messages": [
|
||
|
{"role": "system", "content": system_prompt},
|
||
|
{"role": "user", "content": prompt},
|
||
|
],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
conn.request("POST", "/chat", payload, headers)
|
||
|
init_response = conn.getresponse()
|
||
|
init_data = (
|
||
|
init_response.read()
|
||
|
.decode("utf-8")
|
||
|
.replace("\n", "")
|
||
|
.replace("\t", "")
|
||
|
)
|
||
|
init_json = json.loads(init_data)
|
||
|
if "choices" not in init_json:
|
||
|
continue
|
||
|
reply = init_json["choices"][0]["message"]["content"]
|
||
|
conn.close()
|
||
|
return reply
|
||
|
except Exception:
|
||
|
continue
|
||
|
|
||
|
# For top miner based on bittensor response
|
||
|
try:
|
||
|
payload = json.dumps(
|
||
|
{
|
||
|
"top_n": top_n,
|
||
|
"messages": [
|
||
|
{"role": "system", "content": system_prompt},
|
||
|
{"role": "user", "content": prompt},
|
||
|
],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
conn.request("POST", "/chat", payload, headers)
|
||
|
response = conn.getresponse()
|
||
|
utf_string = (
|
||
|
response.read().decode("utf-8").replace("\n", "").replace("\t", "")
|
||
|
)
|
||
|
if top_n:
|
||
|
conn.close()
|
||
|
return utf_string
|
||
|
json_resp = json.loads(utf_string)
|
||
|
reply = json_resp["choices"][0]["message"]["content"]
|
||
|
conn.close()
|
||
|
return reply
|
||
|
except Exception as e:
|
||
|
conn.request("GET", f"/error_msg?e={e}&p={prompt}", headers=headers)
|
||
|
return "Sorry I am unable to provide response now, Please try again later."
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
"system_prompt": self.system_prompt,
|
||
|
"top_responses": self.top_responses,
|
||
|
}
|