mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
222 lines
7.6 KiB
Python
222 lines
7.6 KiB
Python
|
"""Question answering over a graph."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
from langchain_core.callbacks.manager import CallbackManager, CallbackManagerForChainRun
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts import BasePromptTemplate
|
||
|
from langchain_core.prompts.prompt import PromptTemplate
|
||
|
from langchain_core.pydantic_v1 import Field
|
||
|
|
||
|
from langchain_community.chains.graph_qa.prompts import (
|
||
|
CYPHER_QA_PROMPT,
|
||
|
GRAPHDB_SPARQL_FIX_TEMPLATE,
|
||
|
GREMLIN_GENERATION_PROMPT,
|
||
|
)
|
||
|
from langchain_community.graphs import GremlinGraph
|
||
|
|
||
|
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
||
|
|
||
|
|
||
|
def extract_gremlin(text: str) -> str:
|
||
|
"""Extract Gremlin code from a text.
|
||
|
|
||
|
Args:
|
||
|
text: Text to extract Gremlin code from.
|
||
|
|
||
|
Returns:
|
||
|
Gremlin code extracted from the text.
|
||
|
"""
|
||
|
text = text.replace("`", "")
|
||
|
if text.startswith("gremlin"):
|
||
|
text = text[len("gremlin") :]
|
||
|
return text.replace("\n", "")
|
||
|
|
||
|
|
||
|
class GremlinQAChain(Chain):
|
||
|
"""Chain for question-answering against a graph by generating gremlin statements.
|
||
|
|
||
|
*Security note*: Make sure that the database connection uses credentials
|
||
|
that are narrowly-scoped to only include necessary permissions.
|
||
|
Failure to do so may result in data corruption or loss, since the calling
|
||
|
code may attempt commands that would result in deletion, mutation
|
||
|
of data if appropriately prompted or reading sensitive data if such
|
||
|
data is present in the database.
|
||
|
The best way to guard against such negative outcomes is to (as appropriate)
|
||
|
limit the permissions granted to the credentials used with this tool.
|
||
|
|
||
|
See https://python.langchain.com/docs/security for more information.
|
||
|
"""
|
||
|
|
||
|
graph: GremlinGraph = Field(exclude=True)
|
||
|
gremlin_generation_chain: LLMChain
|
||
|
qa_chain: LLMChain
|
||
|
gremlin_fix_chain: LLMChain
|
||
|
max_fix_retries: int = 3
|
||
|
input_key: str = "query" #: :meta private:
|
||
|
output_key: str = "result" #: :meta private:
|
||
|
top_k: int = 100
|
||
|
return_direct: bool = False
|
||
|
return_intermediate_steps: bool = False
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
"""Input keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
return [self.input_key]
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
"""Output keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
_output_keys = [self.output_key]
|
||
|
return _output_keys
|
||
|
|
||
|
@classmethod
|
||
|
def from_llm(
|
||
|
cls,
|
||
|
llm: BaseLanguageModel,
|
||
|
*,
|
||
|
gremlin_fix_prompt: BasePromptTemplate = PromptTemplate(
|
||
|
input_variables=["error_message", "generated_sparql", "schema"],
|
||
|
template=GRAPHDB_SPARQL_FIX_TEMPLATE.replace("SPARQL", "Gremlin").replace(
|
||
|
"in Turtle format", ""
|
||
|
),
|
||
|
),
|
||
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
||
|
gremlin_prompt: BasePromptTemplate = GREMLIN_GENERATION_PROMPT,
|
||
|
**kwargs: Any,
|
||
|
) -> GremlinQAChain:
|
||
|
"""Initialize from LLM."""
|
||
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||
|
gremlin_generation_chain = LLMChain(llm=llm, prompt=gremlin_prompt)
|
||
|
gremlinl_fix_chain = LLMChain(llm=llm, prompt=gremlin_fix_prompt)
|
||
|
return cls(
|
||
|
qa_chain=qa_chain,
|
||
|
gremlin_generation_chain=gremlin_generation_chain,
|
||
|
gremlin_fix_chain=gremlinl_fix_chain,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, str]:
|
||
|
"""Generate gremlin statement, use it to look up in db and answer question."""
|
||
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
|
callbacks = _run_manager.get_child()
|
||
|
question = inputs[self.input_key]
|
||
|
|
||
|
intermediate_steps: List = []
|
||
|
|
||
|
chain_response = self.gremlin_generation_chain.invoke(
|
||
|
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
|
||
|
)
|
||
|
|
||
|
generated_gremlin = extract_gremlin(
|
||
|
chain_response[self.gremlin_generation_chain.output_key]
|
||
|
)
|
||
|
|
||
|
_run_manager.on_text("Generated gremlin:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
generated_gremlin, color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
|
||
|
intermediate_steps.append({"query": generated_gremlin})
|
||
|
|
||
|
if generated_gremlin:
|
||
|
context = self.execute_with_retry(
|
||
|
_run_manager, callbacks, generated_gremlin
|
||
|
)[: self.top_k]
|
||
|
else:
|
||
|
context = []
|
||
|
|
||
|
if self.return_direct:
|
||
|
final_result = context
|
||
|
else:
|
||
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
str(context), color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
|
||
|
intermediate_steps.append({"context": context})
|
||
|
|
||
|
result = self.qa_chain.invoke(
|
||
|
{"question": question, "context": context},
|
||
|
callbacks=callbacks,
|
||
|
)
|
||
|
final_result = result[self.qa_chain.output_key]
|
||
|
|
||
|
chain_result: Dict[str, Any] = {self.output_key: final_result}
|
||
|
if self.return_intermediate_steps:
|
||
|
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
|
||
|
|
||
|
return chain_result
|
||
|
|
||
|
def execute_query(self, query: str) -> List[Any]:
|
||
|
try:
|
||
|
return self.graph.query(query)
|
||
|
except Exception as e:
|
||
|
if hasattr(e, "status_message"):
|
||
|
raise ValueError(e.status_message)
|
||
|
else:
|
||
|
raise ValueError(str(e))
|
||
|
|
||
|
def execute_with_retry(
|
||
|
self,
|
||
|
_run_manager: CallbackManagerForChainRun,
|
||
|
callbacks: CallbackManager,
|
||
|
generated_gremlin: str,
|
||
|
) -> List[Any]:
|
||
|
try:
|
||
|
return self.execute_query(generated_gremlin)
|
||
|
except Exception as e:
|
||
|
retries = 0
|
||
|
error_message = str(e)
|
||
|
self.log_invalid_query(_run_manager, generated_gremlin, error_message)
|
||
|
|
||
|
while retries < self.max_fix_retries:
|
||
|
try:
|
||
|
fix_chain_result = self.gremlin_fix_chain.invoke(
|
||
|
{
|
||
|
"error_message": error_message,
|
||
|
# we are borrowing template from sparql
|
||
|
"generated_sparql": generated_gremlin,
|
||
|
"schema": self.schema,
|
||
|
},
|
||
|
callbacks=callbacks,
|
||
|
)
|
||
|
fixed_gremlin = fix_chain_result[self.gremlin_fix_chain.output_key]
|
||
|
return self.execute_query(fixed_gremlin)
|
||
|
except Exception as e:
|
||
|
retries += 1
|
||
|
parse_exception = str(e)
|
||
|
self.log_invalid_query(_run_manager, fixed_gremlin, parse_exception)
|
||
|
|
||
|
raise ValueError("The generated Gremlin query is invalid.")
|
||
|
|
||
|
def log_invalid_query(
|
||
|
self,
|
||
|
_run_manager: CallbackManagerForChainRun,
|
||
|
generated_query: str,
|
||
|
error_message: str,
|
||
|
) -> None:
|
||
|
_run_manager.on_text("Invalid Gremlin query: ", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
generated_query, color="red", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
_run_manager.on_text(
|
||
|
"Gremlin Query Parse Error: ", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
_run_manager.on_text(
|
||
|
error_message, color="red", end="\n\n", verbose=self.verbose
|
||
|
)
|