langchain/templates/rag-mongo/ingest.py

36 lines
1.2 KiB
Python
Raw Normal View History

2023-11-03 17:31:53 +00:00
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
2023-11-03 17:31:53 +00:00
from pymongo import MongoClient
MONGO_URI = os.environ["MONGO_URI"]
# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
DB_NAME = "langchain-test-2"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
EMBEDDING_FIELD_NAME = "embedding"
client = MongoClient(MONGO_URI)
db = client[DB_NAME]
MONGODB_COLLECTION = db[COLLECTION_NAME]
if __name__ == "__main__":
# Load docs
loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf")
data = loader.load()
# Split docs
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
docs = text_splitter.split_documents(data)
# Insert the documents in MongoDB Atlas Vector Search
_ = MongoDBAtlasVectorSearch.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(disallowed_special=()),
collection=MONGODB_COLLECTION,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)