langchain/libs/community/langchain_community/embeddings/sambanova.py

249 lines
9.1 KiB
Python
Raw Normal View History

import json
from typing import Dict, Generator, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.utils import get_from_dict_or_env
class SambaStudioEmbeddings(BaseModel, Embeddings):
"""SambaNova embedding models.
To use, you should have the environment variables
``SAMBASTUDIO_EMBEDDINGS_BASE_URL``, ``SAMBASTUDIO_EMBEDDINGS_BASE_URI``
``SAMBASTUDIO_EMBEDDINGS_PROJECT_ID``, ``SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID``,
``SAMBASTUDIO_EMBEDDINGS_API_KEY``
set with your personal sambastudio variable or pass it as a named parameter
to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import SambaStudioEmbeddings
embeddings = SambaStudioEmbeddings(sambastudio_embeddings_base_url=base_url,
sambastudio_embeddings_base_uri=base_uri,
sambastudio_embeddings_project_id=project_id,
sambastudio_embeddings_endpoint_id=endpoint_id,
sambastudio_embeddings_api_key=api_key,
batch_size=32)
(or)
embeddings = SambaStudioEmbeddings(batch_size=32)
(or)
# CoE example
embeddings = SambaStudioEmbeddings(
batch_size=1,
model_kwargs={
'select_expert':'e5-mistral-7b-instruct'
}
)
"""
sambastudio_embeddings_base_url: str = ""
"""Base url to use"""
sambastudio_embeddings_base_uri: str = ""
"""endpoint base uri"""
sambastudio_embeddings_project_id: str = ""
"""Project id on sambastudio for model"""
sambastudio_embeddings_endpoint_id: str = ""
"""endpoint id on sambastudio for model"""
sambastudio_embeddings_api_key: str = ""
"""sambastudio api key"""
model_kwargs: dict = {}
"""Key word arguments to pass to the model."""
batch_size: int = 32
"""Batch size for the embedding models"""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["sambastudio_embeddings_base_url"] = get_from_dict_or_env(
values, "sambastudio_embeddings_base_url", "SAMBASTUDIO_EMBEDDINGS_BASE_URL"
)
values["sambastudio_embeddings_base_uri"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_base_uri",
"SAMBASTUDIO_EMBEDDINGS_BASE_URI",
default="api/predict/generic",
)
values["sambastudio_embeddings_project_id"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_project_id",
"SAMBASTUDIO_EMBEDDINGS_PROJECT_ID",
)
values["sambastudio_embeddings_endpoint_id"] = get_from_dict_or_env(
values,
"sambastudio_embeddings_endpoint_id",
"SAMBASTUDIO_EMBEDDINGS_ENDPOINT_ID",
)
values["sambastudio_embeddings_api_key"] = get_from_dict_or_env(
values, "sambastudio_embeddings_api_key", "SAMBASTUDIO_EMBEDDINGS_API_KEY"
)
return values
def _get_tuning_params(self) -> str:
"""
Get the tuning parameters to use when calling the model
Returns:
The tuning parameters as a JSON string.
"""
tuning_params_dict = {
k: {"type": type(v).__name__, "value": str(v)}
for k, v in (self.model_kwargs.items())
}
tuning_params = json.dumps(tuning_params_dict)
return tuning_params
def _get_full_url(self, path: str) -> str:
"""
Return the full API URL for a given path.
:param str path: the sub-path
:returns: the full API URL for the sub-path
:rtype: str
"""
return f"{self.sambastudio_embeddings_base_url}/{self.sambastudio_embeddings_base_uri}/{path}" # noqa: E501
def _iterate_over_batches(self, texts: List[str], batch_size: int) -> Generator:
"""Generator for creating batches in the embed documents method
Args:
texts (List[str]): list of strings to embed
batch_size (int, optional): batch size to be used for the embedding model.
Will depend on the RDU endpoint used.
Yields:
List[str]: list (batch) of strings of size batch size
"""
for i in range(0, len(texts), batch_size):
yield texts[i : i + batch_size]
def embed_documents(
self, texts: List[str], batch_size: Optional[int] = None
) -> List[List[float]]:
"""Returns a list of embeddings for the given sentences.
Args:
texts (`List[str]`): List of texts to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings
for the given sentences
"""
if batch_size is None:
batch_size = self.batch_size
http_session = requests.Session()
url = self._get_full_url(
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
)
params = json.loads(self._get_tuning_params())
embeddings = []
if "nlp" in self.sambastudio_embeddings_base_uri:
for batch in self._iterate_over_batches(texts, batch_size):
data = {"inputs": batch, "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
try:
embedding = response.json()["data"]
embeddings.extend(embedding)
except KeyError:
raise KeyError(
"'data' not found in endpoint response",
response.json(),
)
elif "generic" in self.sambastudio_embeddings_base_uri:
for batch in self._iterate_over_batches(texts, batch_size):
data = {"instances": batch, "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"][0]
else:
embedding = response.json()["predictions"]
embeddings.extend(embedding)
except KeyError:
raise KeyError(
"'predictions' not found in endpoint response",
response.json(),
)
else:
raise ValueError(
f"handling of endpoint uri: {self.sambastudio_embeddings_base_uri} not implemented" # noqa: E501
)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings
for the given sentences
"""
http_session = requests.Session()
url = self._get_full_url(
f"{self.sambastudio_embeddings_project_id}/{self.sambastudio_embeddings_endpoint_id}"
)
params = json.loads(self._get_tuning_params())
if "nlp" in self.sambastudio_embeddings_base_uri:
data = {"inputs": [text], "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
try:
embedding = response.json()["data"][0]
except KeyError:
raise KeyError(
"'data' not found in endpoint response",
response.json(),
)
elif "generic" in self.sambastudio_embeddings_base_uri:
data = {"instances": [text], "params": params}
response = http_session.post(
url,
headers={"key": self.sambastudio_embeddings_api_key},
json=data,
)
try:
if params.get("select_expert"):
embedding = response.json()["predictions"][0][0]
else:
embedding = response.json()["predictions"][0]
except KeyError:
raise KeyError(
"'predictions' not found in endpoint response",
response.json(),
)
else:
raise ValueError(
f"handling of endpoint uri: {self.sambastudio_embeddings_base_uri} not implemented" # noqa: E501
)
return embedding