"LangChain primarily focuses on constructing indexes with the goal of using them as a Retriever. In order to best understand what this means, it's worth highlighting what the base Retriever interface is. The `BaseRetriever` class in LangChain is as follows:"
"It's that simple! The `get_relevant_documents` method can be implemented however you see fit.\n",
"\n",
"Of course, we also help construct what we think useful Retrievers are. The main type of Retriever that we focus on is a Vectorstore retriever. We will focus on that for the rest of this guide.\n",
"\n",
"In order to understand what a vectorstore retriever is, it's important to understand what a Vectorstore is. So let's look at that."
"By default, LangChain uses [Chroma](../../ecosystem/chroma.md) as the vectorstore to index and search embeddings. To walk through this tutorial, we'll first need to install `chromadb`.\n",
"This example showcases question answering over documents.\n",
"We have chosen this as the example for getting started because it nicely combines a lot of different elements (Text splitters, embeddings, vectorstores) and then also shows how to use them in a chain.\n",
"Each of the steps has multiple sub steps and potential configurations. In this notebook we will primarily focus on (1). We will start by showing the one-liner for doing so, but then break down what is actually going on.\n",
"\n",
"First, let's import some common classes we'll use no matter what."
"Next in the generic setup, let's specify the document loader we want to use. You can download the `state_of_the_union.txt` file [here](https://github.com/hwchase17/langchain/blob/master/docs/modules/state_of_the_union.txt)"
"Now that the index is created, we can use it to ask questions of the data! Note that under the hood this is actually doing a few steps as well, which we will cover later in this guide."
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\""
"{'question': 'What did the president say about Ketanji Brown Jackson',\n",
" 'answer': \" The president said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, one of the nation's top legal minds, to continue Justice Breyer's legacy of excellence, and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\\n\",\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"index.query_with_sources(query)"
]
},
{
"cell_type": "markdown",
"id": "ff100212",
"metadata": {},
"source": [
"What is returned from the `VectorstoreIndexCreator` is `VectorStoreIndexWrapper`, which provides these nice `query` and `query_with_sources` functionality. If we just wanted to access the vectorstore directly, we can also do that."
"\" The President said that Judge Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He said she is a consensus builder and has received a broad range of support from organizations such as the Fraternal Order of Police and former judges appointed by Democrats and Republicans.\""
"`VectorstoreIndexCreator` is just a wrapper around all this logic. It is configurable in the text splitter it uses, the embeddings it uses, and the vectorstore it uses. For example, you can configure it as below:"
"Hopefully this highlights what is going on under the hood of `VectorstoreIndexCreator`. While we think it's important to have a simple way to create indexes, we also think it's important to understand what's going on under the hood."