langchain/templates/rag-semi-structured/rag_semi_structured.ipynb

62 lines
1.4 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "30fc2c27",
"metadata": {},
"source": [
"## Run Template\n",
"\n",
"As shown in the README, add template and start server:\n",
"```\n",
"langchain serve add rag-semi-structured\n",
"langchain start\n",
"```\n",
"\n",
"We can now look at the endpoints:\n",
"\n",
"http://127.0.0.1:8000/docs#\n",
"\n",
"And specifically at our loaded template:\n",
"\n",
"http://127.0.0.1:8000/docs#/default/invoke_rag_chroma_private_invoke_post\n",
" \n",
"We can also use remote runnable to call it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "65f5b560",
"metadata": {},
"outputs": [],
"source": [
"from langserve.client import RemoteRunnable\n",
"rag_app = RemoteRunnable('http://localhost:8000/rag-chroma-private')\n",
"rag_app.invoke(\"How does agent memory work?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}