2024-02-19 18:33:15 +00:00
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.language_models.llms import LLM
|
2024-02-19 18:33:15 +00:00
|
|
|
from langchain_core.outputs import GenerationChunk
|
|
|
|
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-01-24 04:04:15 +00:00
|
|
|
VALID_TASKS = (
|
|
|
|
"text2text-generation",
|
|
|
|
"text-generation",
|
|
|
|
"summarization",
|
|
|
|
"conversational",
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
class HuggingFaceEndpoint(LLM):
|
2024-02-19 18:33:15 +00:00
|
|
|
"""
|
|
|
|
HuggingFace Endpoint.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
To use this class, you should have installed the ``huggingface_hub`` package, and
|
|
|
|
the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token,
|
|
|
|
or given as a named parameter to the constructor.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
# Basic Example (no streaming)
|
|
|
|
llm = HuggingFaceEndpoint(
|
|
|
|
endpoint_url="http://localhost:8010/",
|
|
|
|
max_new_tokens=512,
|
|
|
|
top_k=10,
|
|
|
|
top_p=0.95,
|
|
|
|
typical_p=0.95,
|
|
|
|
temperature=0.01,
|
|
|
|
repetition_penalty=1.03,
|
|
|
|
huggingfacehub_api_token="my-api-key"
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
2024-02-19 18:33:15 +00:00
|
|
|
print(llm("What is Deep Learning?"))
|
|
|
|
|
|
|
|
# Streaming response example
|
|
|
|
from langchain_community.callbacks import streaming_stdout
|
|
|
|
|
|
|
|
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
|
|
|
|
llm = HuggingFaceEndpoint(
|
|
|
|
endpoint_url="http://localhost:8010/",
|
|
|
|
max_new_tokens=512,
|
|
|
|
top_k=10,
|
|
|
|
top_p=0.95,
|
|
|
|
typical_p=0.95,
|
|
|
|
temperature=0.01,
|
|
|
|
repetition_penalty=1.03,
|
|
|
|
callbacks=callbacks,
|
|
|
|
streaming=True,
|
2023-12-11 21:53:30 +00:00
|
|
|
huggingfacehub_api_token="my-api-key"
|
|
|
|
)
|
2024-02-19 18:33:15 +00:00
|
|
|
print(llm("What is Deep Learning?"))
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
"""
|
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
endpoint_url: Optional[str] = None
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Endpoint URL to use."""
|
2024-02-19 18:33:15 +00:00
|
|
|
repo_id: Optional[str] = None
|
|
|
|
"""Repo to use."""
|
|
|
|
huggingfacehub_api_token: Optional[str] = None
|
|
|
|
max_new_tokens: int = 512
|
|
|
|
"""Maximum number of generated tokens"""
|
|
|
|
top_k: Optional[int] = None
|
|
|
|
"""The number of highest probability vocabulary tokens to keep for
|
|
|
|
top-k-filtering."""
|
|
|
|
top_p: Optional[float] = 0.95
|
|
|
|
"""If set to < 1, only the smallest set of most probable tokens with probabilities
|
|
|
|
that add up to `top_p` or higher are kept for generation."""
|
|
|
|
typical_p: Optional[float] = 0.95
|
|
|
|
"""Typical Decoding mass. See [Typical Decoding for Natural Language
|
|
|
|
Generation](https://arxiv.org/abs/2202.00666) for more information."""
|
|
|
|
temperature: Optional[float] = 0.8
|
|
|
|
"""The value used to module the logits distribution."""
|
|
|
|
repetition_penalty: Optional[float] = None
|
|
|
|
"""The parameter for repetition penalty. 1.0 means no penalty.
|
|
|
|
See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details."""
|
|
|
|
return_full_text: bool = False
|
|
|
|
"""Whether to prepend the prompt to the generated text"""
|
|
|
|
truncate: Optional[int] = None
|
|
|
|
"""Truncate inputs tokens to the given size"""
|
|
|
|
stop_sequences: List[str] = Field(default_factory=list)
|
|
|
|
"""Stop generating tokens if a member of `stop_sequences` is generated"""
|
|
|
|
seed: Optional[int] = None
|
|
|
|
"""Random sampling seed"""
|
|
|
|
inference_server_url: str = ""
|
|
|
|
"""text-generation-inference instance base url"""
|
|
|
|
timeout: int = 120
|
|
|
|
"""Timeout in seconds"""
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to generate a stream of tokens asynchronously"""
|
|
|
|
do_sample: bool = False
|
|
|
|
"""Activate logits sampling"""
|
|
|
|
watermark: bool = False
|
|
|
|
"""Watermarking with [A Watermark for Large Language Models]
|
|
|
|
(https://arxiv.org/abs/2301.10226)"""
|
|
|
|
server_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any text-generation-inference server parameters not explicitly specified"""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `call` not explicitly specified"""
|
|
|
|
model: str
|
|
|
|
client: Any
|
|
|
|
async_client: Any
|
2023-12-11 21:53:30 +00:00
|
|
|
task: Optional[str] = None
|
|
|
|
"""Task to call the model with.
|
|
|
|
Should be a task that returns `generated_text` or `summary_text`."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
logger.warning(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please make sure that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
if "endpoint_url" not in values and "repo_id" not in values:
|
|
|
|
raise ValueError(
|
|
|
|
"Please specify an `endpoint_url` or `repo_id` for the model."
|
|
|
|
)
|
|
|
|
if "endpoint_url" in values and "repo_id" in values:
|
|
|
|
raise ValueError(
|
|
|
|
"Please specify either an `endpoint_url` OR a `repo_id`, not both."
|
|
|
|
)
|
|
|
|
values["model"] = values.get("endpoint_url") or values.get("repo_id")
|
|
|
|
return values
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
2024-02-19 18:33:15 +00:00
|
|
|
"""Validate that package is installed and that the API token is valid."""
|
2023-12-11 21:53:30 +00:00
|
|
|
try:
|
2024-02-19 18:33:15 +00:00
|
|
|
from huggingface_hub import login
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import huggingface_hub python package. "
|
|
|
|
"Please install it with `pip install huggingface_hub`."
|
|
|
|
)
|
2024-02-19 18:33:15 +00:00
|
|
|
try:
|
|
|
|
huggingfacehub_api_token = get_from_dict_or_env(
|
|
|
|
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
|
|
|
)
|
|
|
|
login(token=huggingfacehub_api_token)
|
|
|
|
except Exception as e:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not authenticate with huggingface_hub. "
|
|
|
|
"Please check your API token."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
from huggingface_hub import AsyncInferenceClient, InferenceClient
|
|
|
|
|
|
|
|
values["client"] = InferenceClient(
|
|
|
|
model=values["model"],
|
|
|
|
timeout=values["timeout"],
|
|
|
|
token=huggingfacehub_api_token,
|
|
|
|
**values["server_kwargs"],
|
|
|
|
)
|
|
|
|
values["async_client"] = AsyncInferenceClient(
|
|
|
|
model=values["model"],
|
|
|
|
timeout=values["timeout"],
|
|
|
|
token=huggingfacehub_api_token,
|
|
|
|
**values["server_kwargs"],
|
|
|
|
)
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
return values
|
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling text generation inference API."""
|
|
|
|
return {
|
|
|
|
"max_new_tokens": self.max_new_tokens,
|
|
|
|
"top_k": self.top_k,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
"typical_p": self.typical_p,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"repetition_penalty": self.repetition_penalty,
|
|
|
|
"return_full_text": self.return_full_text,
|
|
|
|
"truncate": self.truncate,
|
|
|
|
"stop_sequences": self.stop_sequences,
|
|
|
|
"seed": self.seed,
|
|
|
|
"do_sample": self.do_sample,
|
|
|
|
"watermark": self.watermark,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
return {
|
|
|
|
**{"endpoint_url": self.endpoint_url, "task": self.task},
|
|
|
|
**{"model_kwargs": _model_kwargs},
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "huggingface_endpoint"
|
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
def _invocation_params(
|
|
|
|
self, runtime_stop: Optional[List[str]], **kwargs: Any
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
params = {**self._default_params, **kwargs}
|
|
|
|
params["stop_sequences"] = params["stop_sequences"] + (runtime_stop or [])
|
|
|
|
return params
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
2024-02-19 18:33:15 +00:00
|
|
|
"""Call out to HuggingFace Hub's inference endpoint."""
|
|
|
|
invocation_params = self._invocation_params(stop, **kwargs)
|
|
|
|
if self.streaming:
|
|
|
|
completion = ""
|
|
|
|
for chunk in self._stream(prompt, stop, run_manager, **invocation_params):
|
|
|
|
completion += chunk.text
|
|
|
|
return completion
|
|
|
|
else:
|
|
|
|
invocation_params["stop"] = invocation_params[
|
|
|
|
"stop_sequences"
|
|
|
|
] # porting 'stop_sequences' into the 'stop' argument
|
|
|
|
response = self.client.post(
|
|
|
|
json={"inputs": prompt, "parameters": invocation_params},
|
|
|
|
stream=False,
|
|
|
|
task=self.task,
|
|
|
|
)
|
|
|
|
response_text = json.loads(response.decode())[0]["generated_text"]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
# Maybe the generation has stopped at one of the stop sequences:
|
|
|
|
# then we remove this stop sequence from the end of the generated text
|
|
|
|
for stop_seq in invocation_params["stop_sequences"]:
|
|
|
|
if response_text[-len(stop_seq) :] == stop_seq:
|
|
|
|
response_text = response_text[: -len(stop_seq)]
|
|
|
|
return response_text
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
async def _acall(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
invocation_params = self._invocation_params(stop, **kwargs)
|
|
|
|
if self.streaming:
|
|
|
|
completion = ""
|
|
|
|
async for chunk in self._astream(
|
|
|
|
prompt, stop, run_manager, **invocation_params
|
|
|
|
):
|
|
|
|
completion += chunk.text
|
|
|
|
return completion
|
|
|
|
else:
|
|
|
|
invocation_params["stop"] = invocation_params["stop_sequences"]
|
|
|
|
response = await self.async_client.post(
|
|
|
|
json={"inputs": prompt, "parameters": invocation_params},
|
|
|
|
stream=False,
|
|
|
|
task=self.task,
|
|
|
|
)
|
|
|
|
response_text = json.loads(response.decode())[0]["generated_text"]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
# Maybe the generation has stopped at one of the stop sequences:
|
|
|
|
# then remove this stop sequence from the end of the generated text
|
|
|
|
for stop_seq in invocation_params["stop_sequences"]:
|
|
|
|
if response_text[-len(stop_seq) :] == stop_seq:
|
|
|
|
response_text = response_text[: -len(stop_seq)]
|
|
|
|
return response_text
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[GenerationChunk]:
|
|
|
|
invocation_params = self._invocation_params(stop, **kwargs)
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
for response in self.client.text_generation(
|
|
|
|
prompt, **invocation_params, stream=True
|
|
|
|
):
|
|
|
|
# identify stop sequence in generated text, if any
|
|
|
|
stop_seq_found: Optional[str] = None
|
|
|
|
for stop_seq in invocation_params["stop_sequences"]:
|
|
|
|
if stop_seq in response:
|
|
|
|
stop_seq_found = stop_seq
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
# identify text to yield
|
|
|
|
text: Optional[str] = None
|
|
|
|
if stop_seq_found:
|
|
|
|
text = response[: response.index(stop_seq_found)]
|
|
|
|
else:
|
|
|
|
text = response
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-02-19 18:33:15 +00:00
|
|
|
# yield text, if any
|
|
|
|
if text:
|
|
|
|
chunk = GenerationChunk(text=text)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_llm_new_token(chunk.text)
|
|
|
|
|
|
|
|
# break if stop sequence found
|
|
|
|
if stop_seq_found:
|
|
|
|
break
|
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
|
|
invocation_params = self._invocation_params(stop, **kwargs)
|
|
|
|
async for response in await self.async_client.text_generation(
|
|
|
|
prompt, **invocation_params, stream=True
|
|
|
|
):
|
|
|
|
# identify stop sequence in generated text, if any
|
|
|
|
stop_seq_found: Optional[str] = None
|
|
|
|
for stop_seq in invocation_params["stop_sequences"]:
|
|
|
|
if stop_seq in response:
|
|
|
|
stop_seq_found = stop_seq
|
|
|
|
|
|
|
|
# identify text to yield
|
|
|
|
text: Optional[str] = None
|
|
|
|
if stop_seq_found:
|
|
|
|
text = response[: response.index(stop_seq_found)]
|
|
|
|
else:
|
|
|
|
text = response
|
|
|
|
|
|
|
|
# yield text, if any
|
|
|
|
if text:
|
|
|
|
chunk = GenerationChunk(text=text)
|
|
|
|
yield chunk
|
|
|
|
if run_manager:
|
|
|
|
await run_manager.on_llm_new_token(chunk.text)
|
|
|
|
|
|
|
|
# break if stop sequence found
|
|
|
|
if stop_seq_found:
|
|
|
|
break
|