mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
296 lines
10 KiB
Python
296 lines
10 KiB
Python
|
"""KonkoAI chat wrapper."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
import os
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Dict,
|
||
|
Iterator,
|
||
|
List,
|
||
|
Mapping,
|
||
|
Optional,
|
||
|
Set,
|
||
|
Tuple,
|
||
|
Union,
|
||
|
)
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import (
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.chat_models import (
|
||
|
BaseChatModel,
|
||
|
generate_from_stream,
|
||
|
)
|
||
|
from langchain_core.messages import AIMessageChunk, BaseMessage
|
||
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||
|
from langchain_core.pydantic_v1 import Field, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.adapters.openai import (
|
||
|
convert_dict_to_message,
|
||
|
convert_message_to_dict,
|
||
|
)
|
||
|
from langchain_community.chat_models.openai import _convert_delta_to_message_chunk
|
||
|
|
||
|
DEFAULT_API_BASE = "https://api.konko.ai/v1"
|
||
|
DEFAULT_MODEL = "meta-llama/Llama-2-13b-chat-hf"
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class ChatKonko(BaseChatModel):
|
||
|
"""`ChatKonko` Chat large language models API.
|
||
|
|
||
|
To use, you should have the ``konko`` python package installed, and the
|
||
|
environment variable ``KONKO_API_KEY`` and ``OPENAI_API_KEY`` set with your API key.
|
||
|
|
||
|
Any parameters that are valid to be passed to the konko.create call can be passed
|
||
|
in, even if not explicitly saved on this class.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatKonko
|
||
|
llm = ChatKonko(model="meta-llama/Llama-2-13b-chat-hf")
|
||
|
"""
|
||
|
|
||
|
@property
|
||
|
def lc_secrets(self) -> Dict[str, str]:
|
||
|
return {"konko_api_key": "KONKO_API_KEY", "openai_api_key": "OPENAI_API_KEY"}
|
||
|
|
||
|
@classmethod
|
||
|
def is_lc_serializable(cls) -> bool:
|
||
|
"""Return whether this model can be serialized by Langchain."""
|
||
|
return False
|
||
|
|
||
|
client: Any = None #: :meta private:
|
||
|
model: str = Field(default=DEFAULT_MODEL, alias="model")
|
||
|
"""Model name to use."""
|
||
|
temperature: float = 0.7
|
||
|
"""What sampling temperature to use."""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||
|
openai_api_key: Optional[str] = None
|
||
|
konko_api_key: Optional[str] = None
|
||
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
||
|
"""Timeout for requests to Konko completion API."""
|
||
|
max_retries: int = 6
|
||
|
"""Maximum number of retries to make when generating."""
|
||
|
streaming: bool = False
|
||
|
"""Whether to stream the results or not."""
|
||
|
n: int = 1
|
||
|
"""Number of chat completions to generate for each prompt."""
|
||
|
max_tokens: int = 20
|
||
|
"""Maximum number of tokens to generate."""
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["konko_api_key"] = get_from_dict_or_env(
|
||
|
values, "konko_api_key", "KONKO_API_KEY"
|
||
|
)
|
||
|
try:
|
||
|
import konko
|
||
|
|
||
|
except ImportError:
|
||
|
raise ValueError(
|
||
|
"Could not import konko python package. "
|
||
|
"Please install it with `pip install konko`."
|
||
|
)
|
||
|
try:
|
||
|
values["client"] = konko.ChatCompletion
|
||
|
except AttributeError:
|
||
|
raise ValueError(
|
||
|
"`konko` has no `ChatCompletion` attribute, this is likely "
|
||
|
"due to an old version of the konko package. Try upgrading it "
|
||
|
"with `pip install --upgrade konko`."
|
||
|
)
|
||
|
if values["n"] < 1:
|
||
|
raise ValueError("n must be at least 1.")
|
||
|
if values["n"] > 1 and values["streaming"]:
|
||
|
raise ValueError("n must be 1 when streaming.")
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling Konko API."""
|
||
|
return {
|
||
|
"model": self.model,
|
||
|
"request_timeout": self.request_timeout,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
"stream": self.streaming,
|
||
|
"n": self.n,
|
||
|
"temperature": self.temperature,
|
||
|
**self.model_kwargs,
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
def get_available_models(
|
||
|
konko_api_key: Optional[str] = None,
|
||
|
openai_api_key: Optional[str] = None,
|
||
|
konko_api_base: str = DEFAULT_API_BASE,
|
||
|
) -> Set[str]:
|
||
|
"""Get available models from Konko API."""
|
||
|
|
||
|
# Try to retrieve the OpenAI API key if it's not passed as an argument
|
||
|
if not openai_api_key:
|
||
|
try:
|
||
|
openai_api_key = os.environ["OPENAI_API_KEY"]
|
||
|
except KeyError:
|
||
|
pass # It's okay if it's not set, we just won't use it
|
||
|
|
||
|
# Try to retrieve the Konko API key if it's not passed as an argument
|
||
|
if not konko_api_key:
|
||
|
try:
|
||
|
konko_api_key = os.environ["KONKO_API_KEY"]
|
||
|
except KeyError:
|
||
|
raise ValueError(
|
||
|
"Konko API key must be passed as keyword argument or "
|
||
|
"set in environment variable KONKO_API_KEY."
|
||
|
)
|
||
|
|
||
|
models_url = f"{konko_api_base}/models"
|
||
|
|
||
|
headers = {
|
||
|
"Authorization": f"Bearer {konko_api_key}",
|
||
|
}
|
||
|
|
||
|
if openai_api_key:
|
||
|
headers["X-OpenAI-Api-Key"] = openai_api_key
|
||
|
|
||
|
models_response = requests.get(models_url, headers=headers)
|
||
|
|
||
|
if models_response.status_code != 200:
|
||
|
raise ValueError(
|
||
|
f"Error getting models from {models_url}: "
|
||
|
f"{models_response.status_code}"
|
||
|
)
|
||
|
|
||
|
return {model["id"] for model in models_response.json()["data"]}
|
||
|
|
||
|
def completion_with_retry(
|
||
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
||
|
) -> Any:
|
||
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
||
|
return self.client.create(**kwargs)
|
||
|
|
||
|
return _completion_with_retry(**kwargs)
|
||
|
|
||
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
||
|
overall_token_usage: dict = {}
|
||
|
for output in llm_outputs:
|
||
|
if output is None:
|
||
|
# Happens in streaming
|
||
|
continue
|
||
|
token_usage = output["token_usage"]
|
||
|
for k, v in token_usage.items():
|
||
|
if k in overall_token_usage:
|
||
|
overall_token_usage[k] += v
|
||
|
else:
|
||
|
overall_token_usage[k] = v
|
||
|
return {"token_usage": overall_token_usage, "model_name": self.model}
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[ChatGenerationChunk]:
|
||
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
||
|
params = {**params, **kwargs, "stream": True}
|
||
|
|
||
|
default_chunk_class = AIMessageChunk
|
||
|
for chunk in self.completion_with_retry(
|
||
|
messages=message_dicts, run_manager=run_manager, **params
|
||
|
):
|
||
|
if len(chunk["choices"]) == 0:
|
||
|
continue
|
||
|
choice = chunk["choices"][0]
|
||
|
chunk = _convert_delta_to_message_chunk(
|
||
|
choice["delta"], default_chunk_class
|
||
|
)
|
||
|
finish_reason = choice.get("finish_reason")
|
||
|
generation_info = (
|
||
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
||
|
)
|
||
|
default_chunk_class = chunk.__class__
|
||
|
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
should_stream = stream if stream is not None else self.streaming
|
||
|
if should_stream:
|
||
|
stream_iter = self._stream(
|
||
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
||
|
)
|
||
|
return generate_from_stream(stream_iter)
|
||
|
|
||
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
||
|
params = {**params, **kwargs}
|
||
|
response = self.completion_with_retry(
|
||
|
messages=message_dicts, run_manager=run_manager, **params
|
||
|
)
|
||
|
return self._create_chat_result(response)
|
||
|
|
||
|
def _create_message_dicts(
|
||
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
||
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||
|
params = self._client_params
|
||
|
if stop is not None:
|
||
|
if "stop" in params:
|
||
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
params["stop"] = stop
|
||
|
message_dicts = [convert_message_to_dict(m) for m in messages]
|
||
|
return message_dicts, params
|
||
|
|
||
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
||
|
generations = []
|
||
|
for res in response["choices"]:
|
||
|
message = convert_dict_to_message(res["message"])
|
||
|
gen = ChatGeneration(
|
||
|
message=message,
|
||
|
generation_info=dict(finish_reason=res.get("finish_reason")),
|
||
|
)
|
||
|
generations.append(gen)
|
||
|
token_usage = response.get("usage", {})
|
||
|
llm_output = {"token_usage": token_usage, "model_name": self.model}
|
||
|
return ChatResult(generations=generations, llm_output=llm_output)
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {**{"model_name": self.model}, **self._default_params}
|
||
|
|
||
|
@property
|
||
|
def _client_params(self) -> Dict[str, Any]:
|
||
|
"""Get the parameters used for the konko client."""
|
||
|
return {**self._default_params}
|
||
|
|
||
|
def _get_invocation_params(
|
||
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
||
|
) -> Dict[str, Any]:
|
||
|
"""Get the parameters used to invoke the model."""
|
||
|
return {
|
||
|
"model": self.model,
|
||
|
**super()._get_invocation_params(stop=stop),
|
||
|
**self._default_params,
|
||
|
**kwargs,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of chat model."""
|
||
|
return "konko-chat"
|