2023-02-19 17:53:45 +00:00
|
|
|
"""Test self-hosted embeddings."""
|
|
|
|
from typing import Any
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings import (
|
2023-02-19 17:53:45 +00:00
|
|
|
SelfHostedEmbeddings,
|
|
|
|
SelfHostedHuggingFaceEmbeddings,
|
|
|
|
SelfHostedHuggingFaceInstructEmbeddings,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_remote_instance() -> Any:
|
|
|
|
"""Get remote instance for testing."""
|
|
|
|
import runhouse as rh
|
|
|
|
|
|
|
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
|
|
|
|
gpu.install_packages(["pip:./"])
|
|
|
|
return gpu
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_huggingface_embedding_documents() -> None:
|
|
|
|
"""Test self-hosted huggingface embeddings."""
|
|
|
|
documents = ["foo bar"]
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
assert len(output) == 1
|
|
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_huggingface_embedding_query() -> None:
|
|
|
|
"""Test self-hosted huggingface embeddings."""
|
|
|
|
document = "foo bar"
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
|
|
|
|
output = embedding.embed_query(document)
|
|
|
|
assert len(output) == 768
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_huggingface_instructor_embedding_documents() -> None:
|
|
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
|
|
documents = ["foo bar"]
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
assert len(output) == 1
|
|
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_huggingface_instructor_embedding_query() -> None:
|
|
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
|
|
query = "foo bar"
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu)
|
|
|
|
output = embedding.embed_query(query)
|
|
|
|
assert len(output) == 768
|
|
|
|
|
|
|
|
|
|
|
|
def get_pipeline() -> Any:
|
|
|
|
"""Get pipeline for testing."""
|
2023-08-10 17:39:29 +00:00
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
2023-02-19 17:53:45 +00:00
|
|
|
model_id = "facebook/bart-base"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
def inference_fn(pipeline: Any, prompt: str) -> Any:
|
|
|
|
"""Inference function for testing."""
|
|
|
|
# Return last hidden state of the model
|
|
|
|
if isinstance(prompt, list):
|
|
|
|
return [emb[0][-1] for emb in pipeline(prompt)]
|
|
|
|
return pipeline(prompt)[0][-1]
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_embedding_documents() -> None:
|
|
|
|
"""Test self-hosted huggingface instruct embeddings."""
|
|
|
|
documents = ["foo bar"] * 2
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedEmbeddings(
|
|
|
|
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
|
|
|
)
|
|
|
|
output = embedding.embed_documents(documents)
|
|
|
|
assert len(output) == 2
|
|
|
|
assert len(output[0]) == 50265
|
|
|
|
|
|
|
|
|
|
|
|
def test_self_hosted_embedding_query() -> None:
|
|
|
|
"""Test self-hosted custom embeddings."""
|
|
|
|
query = "foo bar"
|
|
|
|
gpu = get_remote_instance()
|
|
|
|
embedding = SelfHostedEmbeddings(
|
|
|
|
model_load_fn=get_pipeline, hardware=gpu, inference_fn=inference_fn
|
|
|
|
)
|
|
|
|
output = embedding.embed_query(query)
|
|
|
|
assert len(output) == 50265
|