2023-03-27 02:49:46 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "1f83f273",
"metadata": {},
"source": [
"# SageMaker Endpoint Embeddings\n",
"\n",
"Let's load the SageMaker Endpoints Embeddings class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker.\n",
"\n",
2023-04-22 15:49:51 +00:00
"For instructions on how to do this, please see [here](https://www.philschmid.de/custom-inference-huggingface-sagemaker). **Note**: In order to handle batched requests, you will need to adjust the return line in the `predict_fn()` function within the custom `inference.py` script:\n",
"\n",
"Change from\n",
"\n",
"`return {\"vectors\": sentence_embeddings[0].tolist()}`\n",
"\n",
"to:\n",
"\n",
"`return {\"vectors\": sentence_embeddings.tolist()}`."
2023-03-27 02:49:46 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "88d366bd",
"metadata": {},
"outputs": [],
"source": [
"!pip3 install langchain boto3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1e9b926a",
"metadata": {},
"outputs": [],
"source": [
2023-04-22 15:49:51 +00:00
"from typing import Dict, List\n",
2023-03-27 02:49:46 +00:00
"from langchain.embeddings import SagemakerEndpointEmbeddings\n",
"from langchain.llms.sagemaker_endpoint import ContentHandlerBase\n",
"import json\n",
"\n",
"\n",
"class ContentHandler(ContentHandlerBase):\n",
" content_type = \"application/json\"\n",
" accepts = \"application/json\"\n",
"\n",
2023-04-22 15:49:51 +00:00
" def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:\n",
" input_str = json.dumps({\"inputs\": inputs, **model_kwargs})\n",
2023-03-27 02:49:46 +00:00
" return input_str.encode('utf-8')\n",
2023-04-22 15:49:51 +00:00
"\n",
" def transform_output(self, output: bytes) -> List[List[float]]:\n",
2023-03-27 02:49:46 +00:00
" response_json = json.loads(output.read().decode(\"utf-8\"))\n",
2023-04-22 15:49:51 +00:00
" return response_json[\"vectors\"]\n",
2023-03-27 02:49:46 +00:00
"\n",
"content_handler = ContentHandler()\n",
"\n",
"\n",
"embeddings = SagemakerEndpointEmbeddings(\n",
" # endpoint_name=\"endpoint-name\", \n",
" # credentials_profile_name=\"credentials-profile-name\", \n",
" endpoint_name=\"huggingface-pytorch-inference-2023-03-21-16-14-03-834\", \n",
" region_name=\"us-east-1\", \n",
" content_handler=content_handler\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe9797b8",
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "76f1b752",
"metadata": {},
"outputs": [],
"source": [
"doc_results = embeddings.embed_documents([\"foo\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fff99b21",
"metadata": {},
"outputs": [],
"source": [
"doc_results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}