mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
156 lines
3.0 KiB
Plaintext
156 lines
3.0 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# PredictionGuard\n",
|
||
|
"\n",
|
||
|
"How to use PredictionGuard wrapper"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "3RqWPav7AtKL"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"! pip install predictionguard langchain"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"id": "2xe8JEUwA7_y"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import predictionguard as pg\n",
|
||
|
"from langchain.llms import PredictionGuard"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"id": "mesCTyhnJkNS"
|
||
|
},
|
||
|
"source": [
|
||
|
"## Basic LLM usage\n",
|
||
|
"\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "Ua7Mw1N4HcER"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"pgllm = PredictionGuard(name=\"default-text-gen\", token=\"<your access token>\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "Qo2p5flLHxrB"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"pgllm(\"Tell me a joke\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"id": "v3MzIUItJ8kV"
|
||
|
},
|
||
|
"source": [
|
||
|
"## Chaining"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "pPegEZExILrT"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain import PromptTemplate, LLMChain"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "suxw62y-J-bg"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"template = \"\"\"Question: {question}\n",
|
||
|
"\n",
|
||
|
"Answer: Let's think step by step.\"\"\"\n",
|
||
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
|
||
|
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||
|
"\n",
|
||
|
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
||
|
"\n",
|
||
|
"llm_chain.predict(question=question)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "l2bc26KHKr7n"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"template = \"\"\"Write a {adjective} poem about {subject}.\"\"\"\n",
|
||
|
"prompt = PromptTemplate(template=template, input_variables=[\"adjective\", \"subject\"])\n",
|
||
|
"llm_chain = LLMChain(prompt=prompt, llm=pgllm, verbose=True)\n",
|
||
|
"\n",
|
||
|
"llm_chain.predict(adjective=\"sad\", subject=\"ducks\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"id": "I--eSa2PLGqq"
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"colab": {
|
||
|
"provenance": []
|
||
|
},
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 1
|
||
|
}
|