mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
152 lines
5.5 KiB
Python
152 lines
5.5 KiB
Python
|
from typing import Any, Dict, List, Optional, Union
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.chat_models import SimpleChatModel
|
||
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
|
||
|
from langchain_core.pydantic_v1 import Field
|
||
|
|
||
|
|
||
|
class ChatMaritalk(SimpleChatModel):
|
||
|
"""`MariTalk` Chat models API.
|
||
|
|
||
|
This class allows interacting with the MariTalk chatbot API.
|
||
|
To use it, you must provide an API key either through the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatMaritalk
|
||
|
chat = ChatMaritalk(api_key="your_api_key_here")
|
||
|
"""
|
||
|
|
||
|
api_key: str
|
||
|
"""Your MariTalk API key."""
|
||
|
|
||
|
temperature: float = Field(default=0.7, gt=0.0, lt=1.0)
|
||
|
"""Run inference with this temperature.
|
||
|
Must be in the closed interval [0.0, 1.0]."""
|
||
|
|
||
|
max_tokens: int = Field(default=512, gt=0)
|
||
|
"""The maximum number of tokens to generate in the reply."""
|
||
|
|
||
|
do_sample: bool = Field(default=True)
|
||
|
"""Whether or not to use sampling; use `True` to enable."""
|
||
|
|
||
|
top_p: float = Field(default=0.95, gt=0.0, lt=1.0)
|
||
|
"""Nucleus sampling parameter controlling the size of
|
||
|
the probability mass considered for sampling."""
|
||
|
|
||
|
system_message_workaround: bool = Field(default=True)
|
||
|
"""Whether to include a workaround for system messages
|
||
|
by adding them as a user message."""
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Identifies the LLM type as 'maritalk'."""
|
||
|
return "maritalk"
|
||
|
|
||
|
def parse_messages_for_model(
|
||
|
self, messages: List[BaseMessage]
|
||
|
) -> List[Dict[str, Union[str, List[Union[str, Dict[Any, Any]]]]]]:
|
||
|
"""
|
||
|
Parses messages from LangChain's format to the format expected by
|
||
|
the MariTalk API.
|
||
|
|
||
|
Parameters:
|
||
|
messages (List[BaseMessage]): A list of messages in LangChain
|
||
|
format to be parsed.
|
||
|
|
||
|
Returns:
|
||
|
A list of messages formatted for the MariTalk API.
|
||
|
"""
|
||
|
parsed_messages = []
|
||
|
|
||
|
for message in messages:
|
||
|
if isinstance(message, HumanMessage):
|
||
|
parsed_messages.append({"role": "user", "content": message.content})
|
||
|
elif isinstance(message, AIMessage):
|
||
|
parsed_messages.append(
|
||
|
{"role": "assistant", "content": message.content}
|
||
|
)
|
||
|
elif isinstance(message, SystemMessage) and self.system_message_workaround:
|
||
|
# Maritalk models do not understand system message.
|
||
|
# #Instead we add these messages as user messages.
|
||
|
parsed_messages.append({"role": "user", "content": message.content})
|
||
|
parsed_messages.append({"role": "assistant", "content": "ok"})
|
||
|
|
||
|
return parsed_messages
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""
|
||
|
Sends the parsed messages to the MariTalk API and returns the generated
|
||
|
response or an error message.
|
||
|
|
||
|
This method makes an HTTP POST request to the MariTalk API with the
|
||
|
provided messages and other parameters.
|
||
|
If the request is successful and the API returns a response,
|
||
|
this method returns a string containing the answer.
|
||
|
If the request is rate-limited or encounters another error,
|
||
|
it returns a string with the error message.
|
||
|
|
||
|
Parameters:
|
||
|
messages (List[BaseMessage]): Messages to send to the model.
|
||
|
stop (Optional[List[str]]): Tokens that will signal the model
|
||
|
to stop generating further tokens.
|
||
|
|
||
|
Returns:
|
||
|
str: If the API call is successful, returns the answer.
|
||
|
If an error occurs (e.g., rate limiting), returns a string
|
||
|
describing the error.
|
||
|
"""
|
||
|
try:
|
||
|
url = "https://chat.maritaca.ai/api/chat/inference"
|
||
|
headers = {"authorization": f"Key {self.api_key}"}
|
||
|
stopping_tokens = stop if stop is not None else []
|
||
|
|
||
|
parsed_messages = self.parse_messages_for_model(messages)
|
||
|
|
||
|
data = {
|
||
|
"messages": parsed_messages,
|
||
|
"do_sample": self.do_sample,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
"temperature": self.temperature,
|
||
|
"top_p": self.top_p,
|
||
|
"stopping_tokens": stopping_tokens,
|
||
|
**kwargs,
|
||
|
}
|
||
|
|
||
|
response = requests.post(url, json=data, headers=headers)
|
||
|
if response.status_code == 429:
|
||
|
return "Rate limited, please try again soon"
|
||
|
elif response.ok:
|
||
|
return response.json().get("answer", "No answer found")
|
||
|
|
||
|
except requests.exceptions.RequestException as e:
|
||
|
return f"An error occurred: {str(e)}"
|
||
|
|
||
|
# Fallback return statement, in case of unexpected code paths
|
||
|
return "An unexpected error occurred"
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
"""
|
||
|
Identifies the key parameters of the chat model for logging
|
||
|
or tracking purposes.
|
||
|
|
||
|
Returns:
|
||
|
A dictionary of the key configuration parameters.
|
||
|
"""
|
||
|
return {
|
||
|
"system_message_workaround": self.system_message_workaround,
|
||
|
"temperature": self.temperature,
|
||
|
"top_p": self.top_p,
|
||
|
"max_tokens": self.max_tokens,
|
||
|
}
|