mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
119 lines
2.8 KiB
Plaintext
119 lines
2.8 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"# Airbyte Question Answering\n",
|
|||
|
"This notebook shows how to do question answering over structured data, in this case using the `AirbyteStripeLoader`.\n",
|
|||
|
"\n",
|
|||
|
"Vectorstores often have a hard time answering questions that requires computing, grouping and filtering structured data so the high level idea is to use a `pandas` dataframe to help with these types of questions. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"1. Load data from Stripe using Airbyte. user the `record_handler` paramater to return a JSON from the data loader."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import os\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"\n",
|
|||
|
"from langchain.document_loaders.airbyte import AirbyteStripeLoader\n",
|
|||
|
"from langchain.chat_models.openai import ChatOpenAI\n",
|
|||
|
"from langchain.agents import AgentType, create_pandas_dataframe_agent\n",
|
|||
|
"\n",
|
|||
|
"stream_name = \"customers\"\n",
|
|||
|
"config = {\n",
|
|||
|
" \"client_secret\": os.getenv(\"STRIPE_CLIENT_SECRET\"),\n",
|
|||
|
" \"account_id\": os.getenv(\"STRIPE_ACCOUNT_D\"),\n",
|
|||
|
" \"start_date\": \"2023-01-20T00:00:00Z\",\n",
|
|||
|
"}\n",
|
|||
|
"\n",
|
|||
|
"def handle_record(record: dict, _id: str):\n",
|
|||
|
" return record.data\n",
|
|||
|
"\n",
|
|||
|
"loader = AirbyteStripeLoader(\n",
|
|||
|
" config=config,\n",
|
|||
|
" record_handler=handle_record,\n",
|
|||
|
" stream_name=stream_name,\n",
|
|||
|
")\n",
|
|||
|
"data = loader.load()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"2. Pass the data to `pandas` dataframe."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"df = pd.DataFrame(data)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"3. Pass the dataframe `df` to the `create_pandas_dataframe_agent` and invoke\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"agent = create_pandas_dataframe_agent(\n",
|
|||
|
" ChatOpenAI(temperature=0, model=\"gpt-4\"),\n",
|
|||
|
" df,\n",
|
|||
|
" verbose=True,\n",
|
|||
|
" agent_type=AgentType.OPENAI_FUNCTIONS,\n",
|
|||
|
")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"attachments": {},
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"4. Run the agent"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"output = agent.run(\"How many rows are there?\")"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"language_info": {
|
|||
|
"name": "python"
|
|||
|
},
|
|||
|
"orig_nbformat": 4
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|