langchain/docs/extras/modules/data_connection/retrievers/integrations/bm25.ipynb

176 lines
3.9 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
"# BM25\n",
"\n",
"[BM25](https://en.wikipedia.org/wiki/Okapi_BM25) also known as the Okapi BM25, is a ranking function used in information retrieval systems to estimate the relevance of documents to a given search query.\n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses BM25 using [`rank_bm25`](https://github.com/dorianbrown/rank_bm25) package.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a801b57c",
"metadata": {},
"outputs": [],
"source": [
"# !pip install rank_bm25"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "393ac030",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspaces/langchain/.venv/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.10) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from langchain.retrievers import BM25Retriever"
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "98b1c017",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"retriever = BM25Retriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
]
},
{
"cell_type": "markdown",
"id": "c016b266",
"metadata": {},
"source": [
"## Create a New Retriever with Documents\n",
"\n",
"You can now create a new retriever with the documents you created."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "53af4f00",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"\n",
"retriever = BM25Retriever.from_documents(\n",
" [\n",
" Document(page_content=\"foo\"),\n",
" Document(page_content=\"bar\"),\n",
" Document(page_content=\"world\"),\n",
" Document(page_content=\"hello\"),\n",
" Document(page_content=\"foo bar\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c0455218",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7dfa5c29",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "997aaa8d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}