2023-10-30 21:31:34 +00:00
|
|
|
import os
|
|
|
|
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
2024-01-02 21:47:11 +00:00
|
|
|
from langchain_community.document_loaders import PyPDFLoader
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
2024-01-02 21:47:11 +00:00
|
|
|
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
2024-01-03 21:28:05 +00:00
|
|
|
from langchain_core.prompts import ChatPromptTemplate
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import (
|
2023-11-07 03:28:22 +00:00
|
|
|
RunnableLambda,
|
|
|
|
RunnableParallel,
|
|
|
|
RunnablePassthrough,
|
|
|
|
)
|
2024-03-01 02:33:21 +00:00
|
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
2023-10-30 21:31:34 +00:00
|
|
|
from pymongo import MongoClient
|
|
|
|
|
|
|
|
# Set DB
|
|
|
|
if os.environ.get("MONGO_URI", None) is None:
|
|
|
|
raise Exception("Missing `MONGO_URI` environment variable.")
|
|
|
|
MONGO_URI = os.environ["MONGO_URI"]
|
|
|
|
|
|
|
|
DB_NAME = "langchain-test-2"
|
|
|
|
COLLECTION_NAME = "test"
|
|
|
|
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
|
|
|
|
|
|
|
|
client = MongoClient(MONGO_URI)
|
|
|
|
db = client[DB_NAME]
|
|
|
|
MONGODB_COLLECTION = db[COLLECTION_NAME]
|
|
|
|
|
|
|
|
# Read from MongoDB Atlas Vector Search
|
|
|
|
vectorstore = MongoDBAtlasVectorSearch.from_connection_string(
|
|
|
|
MONGO_URI,
|
|
|
|
DB_NAME + "." + COLLECTION_NAME,
|
|
|
|
OpenAIEmbeddings(disallowed_special=()),
|
|
|
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
|
|
|
)
|
|
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
|
|
|
|
# RAG prompt
|
|
|
|
template = """Answer the question based only on the following context:
|
|
|
|
{context}
|
|
|
|
Question: {question}
|
|
|
|
"""
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
# RAG
|
|
|
|
model = ChatOpenAI()
|
|
|
|
chain = (
|
|
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
|
|
| prompt
|
|
|
|
| model
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
class Question(BaseModel):
|
|
|
|
__root__: str
|
|
|
|
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|
2023-11-07 03:28:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _ingest(url: str) -> dict:
|
|
|
|
loader = PyPDFLoader(url)
|
|
|
|
data = loader.load()
|
|
|
|
|
|
|
|
# Split docs
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
|
|
docs = text_splitter.split_documents(data)
|
|
|
|
|
|
|
|
# Insert the documents in MongoDB Atlas Vector Search
|
|
|
|
_ = MongoDBAtlasVectorSearch.from_documents(
|
|
|
|
documents=docs,
|
|
|
|
embedding=OpenAIEmbeddings(disallowed_special=()),
|
|
|
|
collection=MONGODB_COLLECTION,
|
|
|
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
|
|
|
)
|
|
|
|
return {}
|
|
|
|
|
|
|
|
|
|
|
|
ingest = RunnableLambda(_ingest)
|