mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
|
from langchain_community.chat_models import ChatOpenAI
|
||
|
from langchain_community.embeddings import OpenAIEmbeddings
|
||
|
from langchain_community.vectorstores import Lantern
|
||
|
from langchain_core.output_parsers import StrOutputParser
|
||
|
from langchain_core.prompts import ChatPromptTemplate
|
||
|
from langchain_core.pydantic_v1 import BaseModel
|
||
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||
|
|
||
|
CONNECTION_STRING = "postgresql://postgres:postgres@localhost:5432"
|
||
|
COLLECTION_NAME = "documents"
|
||
|
DB_NAME = "postgres"
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
|
||
|
vectorstore = Lantern(
|
||
|
collection_name=COLLECTION_NAME,
|
||
|
connection_string=CONNECTION_STRING,
|
||
|
embedding_function=embeddings,
|
||
|
)
|
||
|
|
||
|
retriever = vectorstore.as_retriever()
|
||
|
|
||
|
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
|
||
|
Question: {question}
|
||
|
"""
|
||
|
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
model = ChatOpenAI()
|
||
|
|
||
|
chain = (
|
||
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||
|
| prompt
|
||
|
| model
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
|
||
|
# Add typing for input
|
||
|
class Question(BaseModel):
|
||
|
__root__: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|