langchain/templates/rag-lantern/rag_lantern/chain.py

48 lines
1.2 KiB
Python
Raw Normal View History

from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Lantern
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
CONNECTION_STRING = "postgresql://postgres:postgres@localhost:5432"
COLLECTION_NAME = "documents"
DB_NAME = "postgres"
embeddings = OpenAIEmbeddings()
vectorstore = Lantern(
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING,
embedding_function=embeddings,
)
retriever = vectorstore.as_retriever()
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)