langchain/docs/modules/prompts/chat_prompt_template.ipynb

129 lines
3.9 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "6488fdaf",
"metadata": {},
"source": [
"# Chat Prompt Template\n",
"\n",
"Chat Models takes a list of chat messages as input - this list commonly referred to as a prompt.\n",
"Typically this is not simply a hardcoded list of messages but rather a combination of a template, some examples, and user input.\n",
"LangChain provides several classes and functions to make constructing and working with prompts easy.\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7647a621",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" PromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" AIMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage\n",
")"
]
},
{
"cell_type": "markdown",
"id": "acb4a2f6",
"metadata": {},
"source": [
"You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
"\n",
"For convience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3124f5e9",
"metadata": {},
"outputs": [],
"source": [
"template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
"human_template=\"{text}\"\n",
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9c7e2e6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n",
" HumanMessage(content='I love programming.', additional_kwargs={})]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
"\n",
"# get a chat completion from the formatted messages\n",
"chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()"
]
},
{
"cell_type": "markdown",
"id": "0dbdf94f",
"metadata": {},
"source": [
"If you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5a8d249e",
"metadata": {},
"outputs": [],
"source": [
"prompt=PromptTemplate(\n",
" template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" input_variables=[\"input_language\", \"output_language\"],\n",
")\n",
"system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}