mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
176 lines
4.4 KiB
Plaintext
176 lines
4.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "25bce5eb-8599-40fe-947e-4932cfae8184",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Vald\n",
|
||
|
"\n",
|
||
|
"> [Vald](https://github.com/vdaas/vald) is a highly scalable distributed fast approximate nearest neighbor (ANN) dense vector search engine.\n",
|
||
|
"\n",
|
||
|
"This notebook shows how to use functionality related to the `Vald` database.\n",
|
||
|
"\n",
|
||
|
"To run this notebook you need a running Vald cluster.\n",
|
||
|
"Check [Get Started](https://github.com/vdaas/vald#get-started) for more information.\n",
|
||
|
"\n",
|
||
|
"See the [installation instructions](https://github.com/vdaas/vald-client-python#install)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "f45f46f2-7229-4859-9797-30bbead1b8e0",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!pip install vald-client-python"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "2f65caa9-8383-409a-bccb-6e91fc8d5e8f",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Basic Example"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "eab0b1e4-9793-4be7-a2ba-e4455c21ea22",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.document_loaders import TextLoader\n",
|
||
|
"from langchain.embeddings import HuggingFaceEmbeddings\n",
|
||
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
|
"from langchain.vectorstores import Vald\n",
|
||
|
"\n",
|
||
|
"raw_documents = TextLoader('state_of_the_union.txt').load()\n",
|
||
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||
|
"documents = text_splitter.split_documents(raw_documents)\n",
|
||
|
"embeddings = HuggingFaceEmbeddings()\n",
|
||
|
"db = Vald.from_documents(documents, embeddings, host=\"localhost\", port=8080)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "b0a6797c-2bb0-45db-a636-5d2437f7a4c0",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
|
"docs = db.similarity_search(query)\n",
|
||
|
"docs[0].page_content"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "c4c4e06d-6def-44ce-ac9a-4c01673c29a2",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Similarity search by vector"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "1eb72610-d451-4158-880c-9f0d45fa5909",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"embedding_vector = embeddings.embed_query(query)\n",
|
||
|
"docs = db.similarity_search_by_vector(embedding_vector)\n",
|
||
|
"docs[0].page_content"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "d33588d4-67c2-4bd3-b251-76ae783cbafb",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Similarity search with score"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "1a41e382-0336-4e6d-b2ef-44cc77db2696",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"docs_and_scores = db.similarity_search_with_score(query)\n",
|
||
|
"docs_and_scores[0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "57f930f2-41a0-4795-ad9e-44a33c8f88ec",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Maximal Marginal Relevance Search (MMR)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "4790e437-3207-45cb-b121-d857ab5aabd8",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"In addition to using similarity search in the retriever object, you can also use `mmr` as retriever."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "495754b1-5cdb-4af6-9733-f68700bb7232",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"retriever = db.as_retriever(search_type=\"mmr\")\n",
|
||
|
"retriever.get_relevant_documents(query)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "e213d957-e439-4bd6-90f2-8909323f5f09",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Or use `max_marginal_relevance_search` directly:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "99d928d0-3b79-4588-925e-32230e12af47",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"db.max_marginal_relevance_search(query, k=2, fetch_k=10)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.4"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|