langchain/libs/community/langchain_community/vectorstores/pathway.py

229 lines
7.5 KiB
Python
Raw Normal View History

community[minor]: Pathway vectorstore(#14859) - **Description:** Integration with pathway.com data processing pipeline acting as an always updated vectorstore - **Issue:** not applicable - **Dependencies:** optional dependency on [`pathway`](https://pypi.org/project/pathway/) - **Twitter handle:** pathway_com The PR provides and integration with `pathway` to provide an easy to use always updated vector store: ```python import pathway as pw from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import PathwayVectorClient, PathwayVectorServer data_sources = [] data_sources.append( pw.io.gdrive.read(object_id="17H4YpBOAKQzEJ93xmC2z170l0bP2npMy", service_user_credentials_file="credentials.json", with_metadata=True)) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) embeddings_model = OpenAIEmbeddings(openai_api_key=os.environ["OPENAI_API_KEY"]) vector_server = PathwayVectorServer( *data_sources, embedder=embeddings_model, splitter=text_splitter, ) vector_server.run_server(host="127.0.0.1", port="8765", threaded=True, with_cache=False) client = PathwayVectorClient( host="127.0.0.1", port="8765", ) query = "What is Pathway?" docs = client.similarity_search(query) ``` The `PathwayVectorServer` builds a data processing pipeline which continusly scans documents in a given source connector (google drive, s3, ...) and builds a vector store. The `PathwayVectorClient` implements LangChain's `VectorStore` interface and connects to the server to retrieve documents. --------- Co-authored-by: Mateusz Lewandowski <lewymati@users.noreply.github.com> Co-authored-by: mlewandowski <mlewandowski@MacBook-Pro-mlewandowski.local> Co-authored-by: Berke <berkecanrizai1@gmail.com> Co-authored-by: Adrian Kosowski <adrian@pathway.com> Co-authored-by: mlewandowski <mlewandowski@macbook-pro-mlewandowski.home> Co-authored-by: berkecanrizai <63911408+berkecanrizai@users.noreply.github.com> Co-authored-by: Erick Friis <erick@langchain.dev> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: mlewandowski <mlewandowski@MBPmlewandowski.ht.home> Co-authored-by: Szymon Dudycz <szymond@pathway.com> Co-authored-by: Szymon Dudycz <szymon.dudycz@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 17:50:39 +00:00
"""
Pathway Vector Store client.
The Pathway Vector Server is a pipeline written in the Pathway framweork which indexes
all files in a given folder, embeds them, and builds a vector index. The pipeline reacts
to changes in source files, automatically updating appropriate index entries.
The PathwayVectorClient implements the LangChain VectorStore interface and queries the
PathwayVectorServer to retrieve up-to-date documents.
You can use the client with managed instances of Pathway Vector Store, or run your own
instance as described at https://pathway.com/developers/user-guide/llm-xpack/vectorstore_pipeline/
"""
import json
import logging
from typing import Any, Callable, Iterable, List, Optional, Tuple
import requests
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
# Copied from https://github.com/pathwaycom/pathway/blob/main/python/pathway/xpacks/llm/vector_store.py
# to remove dependency on Pathway library.
class _VectorStoreClient:
def __init__(
self,
host: Optional[str] = None,
port: Optional[int] = None,
url: Optional[str] = None,
):
"""
A client you can use to query :py:class:`VectorStoreServer`.
Please provide aither the `url`, or `host` and `port`.
Args:
- host: host on which `:py:class:`VectorStoreServer` listens
- port: port on which `:py:class:`VectorStoreServer` listens
- url: url at which `:py:class:`VectorStoreServer` listens
"""
err = "Either (`host` and `port`) or `url` must be provided, but not both."
if url is not None:
if host or port:
raise ValueError(err)
self.url = url
else:
if host is None:
raise ValueError(err)
port = port or 80
self.url = f"http://{host}:{port}"
def query(
self, query: str, k: int = 3, metadata_filter: Optional[str] = None
) -> List[dict]:
"""
Perform a query to the vector store and fetch results.
Args:
- query:
- k: number of documents to be returned
- metadata_filter: optional string representing the metadata filtering query
in the JMESPath format. The search will happen only for documents
satisfying this filtering.
"""
data = {"query": query, "k": k}
if metadata_filter is not None:
data["metadata_filter"] = metadata_filter
url = self.url + "/v1/retrieve"
response = requests.post(
url,
data=json.dumps(data),
headers={"Content-Type": "application/json"},
timeout=3,
)
responses = response.json()
return sorted(responses, key=lambda x: x["dist"])
# Make an alias
__call__ = query
def get_vectorstore_statistics(self) -> dict:
"""Fetch basic statistics about the vector store."""
url = self.url + "/v1/statistics"
response = requests.post(
url,
json={},
headers={"Content-Type": "application/json"},
)
responses = response.json()
return responses
def get_input_files(
self,
metadata_filter: Optional[str] = None,
filepath_globpattern: Optional[str] = None,
) -> list:
"""
Fetch information on documents in the vector store.
community[minor]: Pathway vectorstore(#14859) - **Description:** Integration with pathway.com data processing pipeline acting as an always updated vectorstore - **Issue:** not applicable - **Dependencies:** optional dependency on [`pathway`](https://pypi.org/project/pathway/) - **Twitter handle:** pathway_com The PR provides and integration with `pathway` to provide an easy to use always updated vector store: ```python import pathway as pw from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import PathwayVectorClient, PathwayVectorServer data_sources = [] data_sources.append( pw.io.gdrive.read(object_id="17H4YpBOAKQzEJ93xmC2z170l0bP2npMy", service_user_credentials_file="credentials.json", with_metadata=True)) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) embeddings_model = OpenAIEmbeddings(openai_api_key=os.environ["OPENAI_API_KEY"]) vector_server = PathwayVectorServer( *data_sources, embedder=embeddings_model, splitter=text_splitter, ) vector_server.run_server(host="127.0.0.1", port="8765", threaded=True, with_cache=False) client = PathwayVectorClient( host="127.0.0.1", port="8765", ) query = "What is Pathway?" docs = client.similarity_search(query) ``` The `PathwayVectorServer` builds a data processing pipeline which continusly scans documents in a given source connector (google drive, s3, ...) and builds a vector store. The `PathwayVectorClient` implements LangChain's `VectorStore` interface and connects to the server to retrieve documents. --------- Co-authored-by: Mateusz Lewandowski <lewymati@users.noreply.github.com> Co-authored-by: mlewandowski <mlewandowski@MacBook-Pro-mlewandowski.local> Co-authored-by: Berke <berkecanrizai1@gmail.com> Co-authored-by: Adrian Kosowski <adrian@pathway.com> Co-authored-by: mlewandowski <mlewandowski@macbook-pro-mlewandowski.home> Co-authored-by: berkecanrizai <63911408+berkecanrizai@users.noreply.github.com> Co-authored-by: Erick Friis <erick@langchain.dev> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: mlewandowski <mlewandowski@MBPmlewandowski.ht.home> Co-authored-by: Szymon Dudycz <szymond@pathway.com> Co-authored-by: Szymon Dudycz <szymon.dudycz@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 17:50:39 +00:00
Args:
metadata_filter: optional string representing the metadata filtering query
in the JMESPath format. The search will happen only for documents
satisfying this filtering.
filepath_globpattern: optional glob pattern specifying which documents
will be searched for this query.
"""
url = self.url + "/v1/inputs"
response = requests.post(
url,
json={
"metadata_filter": metadata_filter,
"filepath_globpattern": filepath_globpattern,
},
headers={"Content-Type": "application/json"},
)
responses = response.json()
return responses
class PathwayVectorClient(VectorStore):
"""
VectorStore connecting to Pathway Vector Store.
"""
def __init__(
self,
host: Optional[str] = None,
port: Optional[int] = None,
url: Optional[str] = None,
) -> None:
"""
A client you can use to query Pathway Vector Store.
Please provide aither the `url`, or `host` and `port`.
Args:
- host: host on which Pathway Vector Store listens
- port: port on which Pathway Vector Store listens
- url: url at which Pathway Vector Store listens
"""
self.client = _VectorStoreClient(host, port, url)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Pathway is not suitable for this method."""
raise NotImplementedError(
"Pathway vector store does not support adding or removing texts"
" from client."
)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "PathwayVectorClient":
raise NotImplementedError(
"Pathway vector store does not support initializing from_texts."
)
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
metadata_filter = kwargs.pop("metadata_filter", None)
if kwargs:
logging.warning(
"Unknown kwargs passed to PathwayVectorClient.similarity_search: %s",
kwargs,
)
rets = self.client(query=query, k=k, metadata_filter=metadata_filter)
return [
Document(page_content=ret["text"], metadata=ret["metadata"]) for ret in rets
]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
metadata_filter: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Run similarity search with Pathway with distance.
Args:
- query (str): Query text to search for.
- k (int): Number of results to return. Defaults to 4.
- metadata_filter (Optional[str]): Filter by metadata.
Filtering query should be in JMESPath format. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of documents most similar to
the query text and cosine distance in float for each.
Lower score represents more similarity.
"""
rets = self.client(query=query, k=k, metadata_filter=metadata_filter)
return [
(Document(page_content=ret["text"], metadata=ret["metadata"]), ret["dist"])
for ret in rets
]
def _select_relevance_score_fn(self) -> Callable[[float], float]:
return self._cosine_relevance_score_fn
def get_vectorstore_statistics(self) -> dict:
"""Fetch basic statistics about the Vector Store."""
return self.client.get_vectorstore_statistics()
def get_input_files(
self,
metadata_filter: Optional[str] = None,
filepath_globpattern: Optional[str] = None,
) -> list:
"""List files indexed by the Vector Store."""
return self.client.get_input_files(metadata_filter, filepath_globpattern)