2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import warnings
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
List,
|
|
|
|
Literal,
|
|
|
|
Optional,
|
|
|
|
Sequence,
|
|
|
|
Set,
|
|
|
|
Tuple,
|
|
|
|
Union,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
|
|
|
from tenacity import (
|
|
|
|
AsyncRetrying,
|
|
|
|
before_sleep_log,
|
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
min_seconds = 4
|
|
|
|
max_seconds = 10
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(embeddings.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(
|
|
|
|
retry_if_exception_type(openai.error.Timeout)
|
|
|
|
| retry_if_exception_type(openai.error.APIError)
|
|
|
|
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
|
|
| retry_if_exception_type(openai.error.RateLimitError)
|
|
|
|
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
|
|
|
),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
min_seconds = 4
|
|
|
|
max_seconds = 10
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
async_retrying = AsyncRetrying(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(embeddings.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(
|
|
|
|
retry_if_exception_type(openai.error.Timeout)
|
|
|
|
| retry_if_exception_type(openai.error.APIError)
|
|
|
|
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
|
|
| retry_if_exception_type(openai.error.RateLimitError)
|
|
|
|
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
|
|
|
),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
def wrap(func: Callable) -> Callable:
|
|
|
|
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
|
|
|
|
async for _ in async_retrying:
|
|
|
|
return await func(*args, **kwargs)
|
|
|
|
raise AssertionError("this is unreachable")
|
|
|
|
|
|
|
|
return wrapped_f
|
|
|
|
|
|
|
|
return wrap
|
|
|
|
|
|
|
|
|
|
|
|
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
|
|
|
|
def _check_response(response: dict) -> dict:
|
|
|
|
if any(len(d["embedding"]) == 1 for d in response["data"]):
|
|
|
|
import openai
|
|
|
|
|
|
|
|
raise openai.error.APIError("LocalAI API returned an empty embedding")
|
|
|
|
return response
|
|
|
|
|
|
|
|
|
|
|
|
def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the embedding call."""
|
|
|
|
retry_decorator = _create_retry_decorator(embeddings)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _embed_with_retry(**kwargs: Any) -> Any:
|
|
|
|
response = embeddings.client.create(**kwargs)
|
|
|
|
return _check_response(response)
|
|
|
|
|
|
|
|
return _embed_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the embedding call."""
|
|
|
|
|
|
|
|
@_async_retry_decorator(embeddings)
|
|
|
|
async def _async_embed_with_retry(**kwargs: Any) -> Any:
|
|
|
|
response = await embeddings.client.acreate(**kwargs)
|
|
|
|
return _check_response(response)
|
|
|
|
|
|
|
|
return await _async_embed_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class LocalAIEmbeddings(BaseModel, Embeddings):
|
|
|
|
"""LocalAI embedding models.
|
|
|
|
|
|
|
|
Since LocalAI and OpenAI have 1:1 compatibility between APIs, this class
|
|
|
|
uses the ``openai`` Python package's ``openai.Embedding`` as its client.
|
|
|
|
Thus, you should have the ``openai`` python package installed, and defeat
|
|
|
|
the environment variable ``OPENAI_API_KEY`` by setting to a random string.
|
|
|
|
You also need to specify ``OPENAI_API_BASE`` to point to your LocalAI
|
|
|
|
service endpoint.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.embeddings import LocalAIEmbeddings
|
|
|
|
openai = LocalAIEmbeddings(
|
|
|
|
openai_api_key="random-string",
|
|
|
|
openai_api_base="http://localhost:8080"
|
|
|
|
)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
model: str = "text-embedding-ada-002"
|
|
|
|
deployment: str = model
|
|
|
|
openai_api_version: Optional[str] = None
|
|
|
|
openai_api_base: Optional[str] = None
|
|
|
|
# to support explicit proxy for LocalAI
|
|
|
|
openai_proxy: Optional[str] = None
|
|
|
|
embedding_ctx_length: int = 8191
|
|
|
|
"""The maximum number of tokens to embed at once."""
|
|
|
|
openai_api_key: Optional[str] = None
|
|
|
|
openai_organization: Optional[str] = None
|
|
|
|
allowed_special: Union[Literal["all"], Set[str]] = set()
|
|
|
|
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
|
|
|
|
chunk_size: int = 1000
|
|
|
|
"""Maximum number of texts to embed in each batch"""
|
|
|
|
max_retries: int = 6
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
|
|
"""Timeout in seconds for the LocalAI request."""
|
|
|
|
headers: Any = None
|
|
|
|
show_progress_bar: bool = False
|
|
|
|
"""Whether to show a progress bar when embedding."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
warnings.warn(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
values["openai_api_key"] = get_from_dict_or_env(
|
|
|
|
values, "openai_api_key", "OPENAI_API_KEY"
|
|
|
|
)
|
|
|
|
values["openai_api_base"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"openai_api_base",
|
|
|
|
"OPENAI_API_BASE",
|
|
|
|
default="",
|
|
|
|
)
|
|
|
|
values["openai_proxy"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"openai_proxy",
|
|
|
|
"OPENAI_PROXY",
|
|
|
|
default="",
|
|
|
|
)
|
|
|
|
|
|
|
|
default_api_version = ""
|
|
|
|
values["openai_api_version"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"openai_api_version",
|
|
|
|
"OPENAI_API_VERSION",
|
|
|
|
default=default_api_version,
|
|
|
|
)
|
|
|
|
values["openai_organization"] = get_from_dict_or_env(
|
|
|
|
values,
|
|
|
|
"openai_organization",
|
|
|
|
"OPENAI_ORGANIZATION",
|
|
|
|
default="",
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
values["client"] = openai.Embedding
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _invocation_params(self) -> Dict:
|
|
|
|
openai_args = {
|
|
|
|
"model": self.model,
|
|
|
|
"request_timeout": self.request_timeout,
|
|
|
|
"headers": self.headers,
|
|
|
|
"api_key": self.openai_api_key,
|
|
|
|
"organization": self.openai_organization,
|
|
|
|
"api_base": self.openai_api_base,
|
|
|
|
"api_version": self.openai_api_version,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
if self.openai_proxy:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
openai.proxy = {
|
|
|
|
"http": self.openai_proxy,
|
|
|
|
"https": self.openai_proxy,
|
2024-05-22 22:21:08 +00:00
|
|
|
} # type: ignore[assignment]
|
2023-12-11 21:53:30 +00:00
|
|
|
return openai_args
|
|
|
|
|
|
|
|
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint."""
|
|
|
|
# handle large input text
|
|
|
|
if self.model.endswith("001"):
|
|
|
|
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
|
|
|
# replace newlines, which can negatively affect performance.
|
|
|
|
text = text.replace("\n", " ")
|
|
|
|
return embed_with_retry(
|
|
|
|
self,
|
|
|
|
input=[text],
|
|
|
|
**self._invocation_params,
|
|
|
|
)["data"][0]["embedding"]
|
|
|
|
|
|
|
|
async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint."""
|
|
|
|
# handle large input text
|
|
|
|
if self.model.endswith("001"):
|
|
|
|
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
|
|
|
# replace newlines, which can negatively affect performance.
|
|
|
|
text = text.replace("\n", " ")
|
|
|
|
return (
|
|
|
|
await async_embed_with_retry(
|
|
|
|
self,
|
|
|
|
input=[text],
|
|
|
|
**self._invocation_params,
|
|
|
|
)
|
|
|
|
)["data"][0]["embedding"]
|
|
|
|
|
|
|
|
def embed_documents(
|
|
|
|
self, texts: List[str], chunk_size: Optional[int] = 0
|
|
|
|
) -> List[List[float]]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint for embedding search docs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
|
|
|
specified by the class.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of embeddings, one for each text.
|
|
|
|
"""
|
|
|
|
# call _embedding_func for each text
|
|
|
|
return [self._embedding_func(text, engine=self.deployment) for text in texts]
|
|
|
|
|
|
|
|
async def aembed_documents(
|
|
|
|
self, texts: List[str], chunk_size: Optional[int] = 0
|
|
|
|
) -> List[List[float]]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint async for embedding search docs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
|
|
|
specified by the class.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of embeddings, one for each text.
|
|
|
|
"""
|
|
|
|
embeddings = []
|
|
|
|
for text in texts:
|
|
|
|
response = await self._aembedding_func(text, engine=self.deployment)
|
|
|
|
embeddings.append(response)
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint for embedding query text.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The text to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Embedding for the text.
|
|
|
|
"""
|
|
|
|
embedding = self._embedding_func(text, engine=self.deployment)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
|
|
"""Call out to LocalAI's embedding endpoint async for embedding query text.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The text to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Embedding for the text.
|
|
|
|
"""
|
|
|
|
embedding = await self._aembedding_func(text, engine=self.deployment)
|
|
|
|
return embedding
|